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Light is the ideal tool to image and manipulate electrons in solids

Light-induced chemistry

Science 339, 1302-

1305 (2013)

Light-induced 

spin dynamics

Phys. Rev. Lett. 76, 

4250 (1996)



Ultrafast Detectors for Electrons in Atoms and Molecules

Atoms in gas phase 

Investigation of isolated, non-interacting particles

Gas jet

• Isolated non-interacting 

particles

• Localized wave functions 

on individual particles

• Well separated electronic 

states
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Ultrafast Detectors for Electrons in Atoms and Molecules

Atoms in gas phase 

Investigation of isolated, non-interacting particles

Gas jet

Probe-

Pulse

Pump-

Pulse

Orbital Tomography

Calegari et al. J. Phys. B 49 (2016) 062001

Meckel M et al 2008 Science 320 1478–82

Electron and wave packet dynamics of individual molecules on their intrinsic

as to fs timescale



Ultrafast Dynamics in Solids

Optically excited solids

• Coupled atoms/particles

• Chemical bonding 

• Coupling between different 

degrees of freedom

Electronic degree of freedom
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Optically excited solids
Electronic degree of freedom

• Interaction of light with 

electronic degree of freedom
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Ultrafast Dynamics in Solids

Optically excited solids

Spins

R(T)R(T)

• Interaction of light with 

electronic degree of freedom

• Coupling of electrons to other 

degrees of freedom

• Coupling strength reflected 

by scattering rate

Spin Lattice



Ultrafast Spectroscopy

ultrafast clock sensor for electron and spin system

Pump-Probe Photoemission Spectroscopy 

Δ t [fs]

Pump Pulse

“Trigger”

Probe Pulse

“Sensor”
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Signatures of Charge and Spin Carriers in Solids

Electronic wave functions in a solid 
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Electronic band structure is experimental observable of electronic wave function 

in energy and momentum space



Photoemission and the Band Structure Approach

Projection of band structure into the vacuum

The 2021 Ultrafast Spectroscopic Probes of 

Condensed Matter Roadmap – Chapter 8

J. Phys.: Condens. Matter 33 (2021) 353001
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Photoemission and the Band Structure Approach

The 2021 Ultrafast Spectroscopic Probes of 

Condensed Matter Roadmap – Chapter 8

J. Phys.: Condens. Matter 33 (2021) 353001

Spin-resolved ARPES

Spin-resolved Momentum Microscopy

Multidimensional (time, spin, momentum, energy) photoemission 

spectroscopy fs XUV light pulses
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Photoemission and the Band Structure Approach
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(Spin-) ARPES technique

Access to momentum and spin-resolved photoemission yield at selected regions of 

the band structure
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Photoemission and the Band Structure Approach
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Photoemission and the Band Structure Approach
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Photoemission and the Band Structure Approach
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Photoemission and the Band Structure Approach

Sample
kx

Spin-resolved momentum microscope “NanoEsca” @ ELI-Alps

Ideal tool for a complete photoemission experiment sensitive to spin, momentum, 

energy, and space of the emitted electrons



Ultrafast Photoelectron Spectroscopy

ultrafast clock sensor for electron and spin system

Δ t [fs]

Pump Pulse

“Trigger”

Probe Pulse

“Sensor”

The 2021 Ultrafast Spectroscopic Probes of 

Condensed Matter Roadmap – Chapter 8

J. Phys.: Condens. Matter 33 (2021) 353001

Multidimensional (time, spin, momentum, energy) photoemission 

spectroscopy fs XUV light pulses

Spin-resolved ARPES

Momentum Microscopy



Ultrafast Photoelectron Spectroscopy

fs laser amplifier Higher Harmonic Generation 

30 fs, 10kHz – 1MHz 30 fs, 20 eV 

– 200 eV

Photoemission 

Detector System

Multidimensional (time, spin, momentum, energy) photoemission 

spectroscopy fs XUV light pulses



High harmonics generation

Ultrafast light source for extreme UV and soft X-rays

Photon energies:

Cutoff energy

Spectrum of high harmonics



Ultrafast light source for extreme UV and soft X-rays

With all HHG lines

Monochromatic source fs-XUV source based on HHG

Superposition of several PES spectra generated by different photon energies

High harmonics generation



Ultrafast light source for extreme UV and soft X-rays

Polychromatic spectrum

High harmonics generation

Eich et al., JESRP 195 (2014): 231-236.
Sn-filters Al-filters

Monochromatizating with pass filters
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Quasi-monochromatic fs-XUV light source by monochromatization

150 meV

bandwidth



Ultrafast Photoelectron Spectroscopy
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Ultrafast Photoelectron Spectroscopy

fs laser amplifier

BBO

Higher Harmonic Generation 

30 fs, 1.55eV, 

10kHz 30 fs, 22 eV

Delay-line

Ti 3d

Se 4p

Folded Se 4p

-200 fs

0 fs

k||

E

Transient band structure

100 fs

Complete photoemission experiment for ultrafast surface science:

1. Dynamics of charge and spin carrier in energy and momentum space

2. Transient renormalization of spin-dependent band structure

Multidimensional (time, spin, momentum, energy) photoemission 

spectroscopy fs XUV light pulses
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Challenges of Ultrafast Photoelectron Spectroscopy

Space Charge Effects

Journ. Appl. Phys. 100, 024912 

(2006)



Challenges of Ultrafast Photoelectron Spectroscopy

Space Charge Effects
Vacuum space charge in ARPES: 

Example: Surface State of Cu(111) surface

Space charge can lead to:

- Broadening in energy and momentum

- Energy shifts

- Total loss of information in ARPES dataJourn. Appl. Phys. 100, 024912 

(2006)

1 electron/pulse >105 electrons/pulse



Challenges of Ultrafast Photoelectron Spectroscopy

Space Charge Effects
Vacuum space charge in ARPES: 

Journ. Appl. Phys. 100, 024912 

(2006)

Energy broadening
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Momentum broadening
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Repetition rate of fs-XUV sources

T. Saule et al. Nat Commun 10, 458 (2019)

Photon flux and photons/pulse Photoelectrons and space charge



Challenges of Ultrafast Photoelectron Spectroscopy

Repetition rate of fs-XUV sources

T. Saule et al. Nat Commun 10, 458 (2019)

Photon flux and photons/pulse Photoelectrons and space charge

High repetition rate is essential for minor space charge effects and high data quality 



Challenges of Ultrafast Photoelectron Spectroscopy

User facilities for ultrafast spectroscopy with fs/as time resolution  

sub 10-fs XUV source (15 - 120 eV) for ultrafast time-resolved 

surface science studies

NanoESCA

ELI-ALPS
Szeged, Hungary:  
EU research facility

Surface science end station

ARTEMIS
Rutherford Appleton Lab, UK

100 kHz IR OPCPA system

100kHz IR fiber-based, 3fs, 5mJ
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The characteristic timescales of (condensed) matter

Dynamical Screening

Bulk/Surface Plasmons

Electron Decoherence

Core Level Dynamics Valence Band Dynamics

Time 

Energy
1 keV 1 eV

1 fs1 as



Population Dynamics in 2D Semiconductors

C60 on Ag(111)
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Spin-valley-layer locked valence band structure

Hidden spin polarization

Bulk unit cell

X. Zhang et al. 

Nature Phys 10, 387–393 (2014)

Riley et al. Nat. Phys. 10 (2014) 835
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Spin-dependent valence band structure
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Population Dynamics in 2D Semiconductors



Spin-dependent unoccupied band structure

CB

B
in

d
in

g
 e

n
e
rg

y
W

S
e

2
W

S
e

2

VB2

VB1

KΣ

k||

Population Dynamics in 2D Semiconductors



Spin-dependent excited states band structure
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Bertoni et al. Phys. Rev. Lett. 117, 277201 (2016)



Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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- Capture a movie of carrier dynamics in real time



Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Spin-dependent excited states band structure

Ultrafast Spin Carrier Dynamics of WSe2
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Direct access to spin-dependent inter- and intraband scattering of 

electrons and holes in real time



Excited Charge Carriers in Ultrathin Semiconductors
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Excited Charge Carriers in Ultrathin Semiconductors

C60 on Ag(111)C60 on Ag(111)

Different types of excitons:

- Localized Frenkel excitons 

→ Charge neutral quasi-particles

- Charge transfer (CT) excitons 

→ Charge-separated states

- Wannier-like excitons

→ Delocalized over several unit cells 

Spatial confinement of carriers

Calegari et al. J. Phys. B 49 (2016) 062001
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Orbital tomography for free 
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Can we also image the spatial confinement of carriers in solids?
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Conclusions

Ultrafast pump-probe photoemission 

with fs XUV pulses is a powerful tool 

for imaging 

…. inter and interlayer charge and spin 

transfer processes 

… the orbitals of excited molecular and 

2D materials

… the transient charge doping of 

materials

with femtosecond time resolution.



Outline

Monitoring….

…. the population dynamics of charge 

and spin carriers in momentum space

… the nature and spatial distribution of 

charge carriers in direct space 

… interlayer charge separation across 

interfaces

Perspectives and challenges of attosecond 

surface science

Ultrafast science in solids

… electrons in solids

… time-resolved photoemission spectroscopy
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Relative photoemission times in solids

Open Questions:

- What is the role of transport?

- How does the final state influence the 

photoemission time?

- What about the orbital momentum of 

the electrons

Z. Tao, et al., Science. 353 (2016) 62
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From fs to attosecond spectroscopy

Single attosecond 
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Continuous wave 

light source

Loss of energy 

resolution

No easy way to conduced attosecond streaking experiment for valence 

band structure
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states?
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and spin carriers in momentum space
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