

Time-resolved photoemission spectroscopy – An ultrafast camera to image charge and spin carrier dynamics in condensed matter

Benjamin Stadtmüller

Experimental physik II, Institute of Physics, Augsburg University, Germany

Outline

Ultrafast science in solids

- ... electrons in solids
- ... time-resolved photoemission spectroscopy

Monitoring....

.... the population dynamics of charge and spin carriers in momentum space ... the nature and spatial distribution of charge carriers in direct space ... interlayer charge separation across interfaces

Perspectives and challenges of attosecond surface science

wir

The characteristic timescales of (condensed) matter

wir

The Role of Charges and Spins in Condensed Matter

The Role of Charges and Spins in Condensed Matter

The Role of Charges and Spins in Condensed Matter

Investigation of isolated, non-interacting particles

Atoms in gas phase

- Isolated non-interacting particles
- Localized wave functions on individual particles
- Well separated electronic states

Investigation of isolated, non-interacting particles

Atoms in gas phase

Ultrafast electron dynamics

Phys. Rev. A 94, 023403 (2016)

Investigation of isolated, non-interacting particles

Atoms in gas phase

Ultrafast electron dynamics

Phys. Rev. A **94**, 023403 (2016)

Coupled atoms/particles

- Chemical bonding
- Coupling between different degrees of freedom

wir

• Interaction of light with electronic degree of freedom Electronic degree of freedom

Optically excited solids

- Interaction of light with electronic degree of freedom
- Coupling of electrons to other degrees of freedom

Optically excited solids

- Interaction of light with electronic degree of freedom
- Coupling of electrons to other degrees of freedom

Optically excited solids

- Interaction of light with electronic degree of freedom
- Coupling of electrons to other degrees of freedom
- Coupling strength reflected by scattering rate $\Gamma = \frac{1}{\Delta \tau_i}$

wir

Ultrafast Spectroscopy

Pump-Probe Photoemission Spectroscopy

Signatures of Charge and Spin Carriers in Solids

Signatures of Charge and Spin Carriers in Solids

Signatures of Charge and Spin Carriers in Solids

Electronic band structure is experimental observable of electronic wave function in energy and momentum space

Projection of band structure into the vacuum

Multidimensional (time, spin, momentum, energy) photoemission spectroscopy fs XUV light pulses

The 2021 Ultrafast Spectroscopic Probes of Condensed Matter Roadmap – Chapter 8 J. Phys.: Condens. Matter 33 (2021) 353001

Spin-resolved Momentum Microscopy

(Spin-) ARPES technique

wir

Momentum Microcopy

Image of sample surface

► X

У

Momentum Microcopy

Time of flight energy analyzer

Dispersive energy analyzer

Momentum distribution of electrons

Momentum Microcopy

Spin-resolved momentum microscope "NanoEsca" @ ELI-Alps

Ideal tool for a complete photoemission experiment sensitive to spin, momentum, energy, and space of the emitted electrons

Ultrafast Photoelectron Spectroscopy

Multidimensional (time, spin, momentum, energy) photoemission spectroscopy fs XUV light pulses

The 2021 Ultrafast Spectroscopic Probes of Condensed Matter Roadmap – Chapter 8 J. Phys.: Condens. Matter 33 (2021) 353001

wir
Ultrafast Photoelectron Spectroscopy

Multidimensional (time, spin, momentum, energy) photoemission spectroscopy fs XUV light pulses

Ultrafast light source for extreme UV and soft X-rays

High harmonics generation

Ultrafast light source for extreme UV and soft X-rays

Superposition of several PES spectra generated by different photon energies

wir

Ultrafast light source for extreme UV and soft X-rays

High harmonics generation

Polychromatic spectrum

Monochromatizating with pass filters

Ultrafast Photoelectron Spectroscopy

Multidimensional (time, spin, momentum, energy) photoemission spectroscopy fs XUV light pulses **Higher Harmonic Generation** fs laser amplifier 30 fs, 1.55eV, 30 fs, 22 eV 10kHz **BBO** Transient band structure -200 fs Ti 3d Se 4p Folded Se 4p E **Delay-line** delay t Itsj

Ultrafast Photoelectron Spectroscopy

Multidimensional (time, spin, momentum, energy) photoemission spectroscopy fs XUV light pulses **Higher Harmonic Generation** fs laser amplifier 30 fs, 1.55eV, 30 fs, 22 eV 10kHz **BBO** Transient band structure -200 fs Se 4p Ofs

Complete photoemission experiment for ultrafast surface science:

- 1. Dynamics of charge and spin carrier in energy and momentum space
- 2. Transient renormalization of spin-dependent band structure

Photoelectron spectroscopy

- Monochromatized photon source
- Small spectral bandwidth of source
- High photon flux

- Monochromatized photon source
- Small spectral bandwidth of source
- High photon flux

- High photon energies
- Attosecond pulse trains
- High Intensity per pulse

- Monochromatized photon source
- Small spectral bandwidth of source
- High photon flux

- High photon energies
- Attosecond pulse trains
- High Intensity per pulse

- Monochromatized photon source
- Small spectral bandwidth of source
- High photon flux

- High photon energies
- Attosecond pulse trains
- High Intensity per pulse

- Monochromatized photon source
- Small spectral bandwidth of source
- High photon flux

- High photon energies
- Attosecond pulse trains
- High Intensity per pulse

Space Charge Effects

Journ. Appl. Phys. **100**, 024912 (2006)

Space Charge Effects

Journ. Appl. Phys. **100**, 024912 (2006)

Space charge can lead to:

- Broadening in energy and momentum
- Energy shifts
- Total loss of information in ARPES data

Space Charge Effects

Journ. Appl. Phys. **100**, 024912 (2006)

Niv

Repetition rate of fs-XUV sources

Repetition rate of fs-XUV sources

T. Saule et al. Nat Commun 10, 458 (2019)

wir

User facilities for ultrafast spectroscopy with fs/as time resolution

ELI-ALPS Szeged, Hungary: EU research facility

Surface science end station

ARTEMIS Rutherford Appleton Lab, UK

100 kHz IR OPCPA system

100kHz IR fiber-based, 3fs, 5mJ

attosecond

sub 10-fs XUV source (15 - 120 eV) for ultrafast time-resolved surface science studies

Outline

Ultrafast science in solids

- ... electrons in solids
- ... time-resolved photoemission spectroscopy

Monitoring....

.... the population dynamics of charge and spin carriers in momentum space ... the nature and spatial distribution of charge carriers in direct space ... interlayer charge separation across interfaces

Perspectives and challenges of attosecond surface science

The Team

RPTU Kaiserslautern:

M. Aeschlimann,

S. Emmerich, *S. Hedwig*, *B. Arnoldi*, *E. S. Walther*, *G. Zinke*, C. Schott, R. Hemm, M. Mitkov

University of Arizona O. L.A. Monti, S. Zachritz

University of Göttingen S. Mathias, M. Jansen, W. Bennecke

University of Graz P. Puschnig

LMU München J. Braun, H. Ebert

GEORG-AUGUST-UNIVERSITÄT Göttingen

Elettra NanoEsca team PGI-6: V. Feyer, G. Zamborlini, M. Jugovac

ELI-ALPS NanoEsca team

L. Ovari, G. Halasi, C. Vass,

The characteristic timescales of (condensed) matter

Spin-valley-layer locked valence band structure

Hidden spin polarization

X. Zhang et al. Nature Phys 10, 387–393 (2014) Riley et al. Nat. Phys. 10 (2014) 835

Spin-dependent valence band structure

 Σ
 K

 VB1

 VB2

 k

wir

Spin-dependent valence band structure

 WSe_2

WSe₂

Spin-dependent valence band structure

Spin-dependent unoccupied band structure

wik

Spin-dependent excited states band structure

Spin-dependent excited states band structure

- Capture a movie of carrier dynamics in real time

wir

Spin-dependent excited states band structure

- Capture a movie of carrier dynamics in real time
- Quantify the population dynamics of electrons and holes in momentum space

Ultrafast Spin Carrier Dynamics of WSe,

Spin-dependent excited states band structure

WSe₂

Spin conserving intervalley scattering from K to Σ valley

UND

1.55eV, 30fs, π pol, 0.6mJ/cm²

Ultrafast Spin Carrier Dynamics of WSe,

Spin-dependent excited states band structure

WSe,

Spin conserving intervalley scattering from K to Σ valley

UND

1.55eV, 30fs, π pol, 0.6mJ/cm²

Spin-dependent excited states band structure

NSe,

1.55eV, 30fs, π pol, 0.6mJ/cm²

UND

Spin-dependent excited states band structure

NSe,

- Reversal of spin polarization Σ valley

Spin-dependent excited states band structure

NSe,

- Reversal of spin polarization Σ valley

Spin-dependent excited states band structure

Direct access to spin-dependent inter- and intraband scattering of electrons and holes in real time

Excited Charge Carriers in Ultrathin Semiconductors

Spatial confinement of carriers

Energy level diagram

Molecular semiconductors

Inorganic semiconductors
Excited Charge Carriers in Ultrathin Semiconductors

Spatial confinement of carriers

Different types of excitons:

- Localized Frenkel excitons
- \rightarrow Charge neutral quasi-particles
- Charge transfer (CT) excitons
- \rightarrow Charge-separated states

Molecular semiconductors

Inorganic semiconductors

Excited Charge Carriers in Ultrathin Semiconductors

Spatial confinement of carriers

Different types of excitons:

- Localized Frenkel excitons
- \rightarrow Charge neutral quasi-particles
- Charge transfer (CT) excitons
- \rightarrow Charge-separated states
- Wannier-like excitons
- \rightarrow Delocalized over several unit cells

Energy level diagram

Molecular semiconductors

Inorganic semiconductors

Excited Charge Carriers in Ultrathin Semiconductors

Spatial confinement of carriers

Different types of excitons:

- Localized Frenkel excitons
- \rightarrow Charge neutral quasi-particles
- Charge transfer (CT) excitons
- \rightarrow Charge-separated states
- Wannier-like excitons
- \rightarrow Delocalized over several unit cells

Can we also image the spatial confinement of carriers in solids?

Photoemission Orbital Tomography (POT) for Molecular Materials

Photocurrent: Fermi's Golden Rule I $(E_{kin}, \theta, \varphi) \propto |FT[\psi_{MO}]|^2$

P. Puschnig, M. Ramsey, Science 326, 702 (2009)

Photoemission Orbital Tomography (POT) for Molecular Materials

P. Puschnig, M. Ramsey, Science 326, 702 (2009)

Excited States POT for Molecular Materials

Excited States POT for Molecular Materials

Excited States POT for Molecular Materials

Nat. Commun. 10, 1470 (2019)

Excited States POT for Molecular Materials

Nat. Commun. 10, 1470 (2019); Nat. Commun. 15, 1804 (2024)

MIN

Excited States POT for Molecular Materials

Nat. Commun. 10, 1470 (2019); Nat. Commun. 15, 1804 (2024)

M

Excited States POT for Molecular Materials

Nat. Commun. 10, 1470 (2019); Nat. Commun. 15, 1804 (2024)

Excited States POT for Molecular Materials

Nat. Commun. 10, 1470 (2019); Nat. Commun. 15, 1804 (2024)

Excited States POT for 2D Materials

Excited States POT for 2D Materials

Excited States POT for 2D Materials

S. Dong et al. Nat Sci 2021; 1:e10010

W۵

Excited States POT for 2D Materials

Conclusions

Ultrafast pump-probe photoemission with fs XUV pulses is a powerful tool for imaging

- inter and interlayer charge and spin transfer processes
- ... the orbitals of excited molecular and 2D materials
- ... the transient charge doping of materials

with femtosecond time resolution.

Outline

Ultrafast science in solids

- ... electrons in solids
- ... time-resolved photoemission spectroscopy

.... the population dynamics of charge and spin carriers in momentum space ... the nature and spatial distribution of charge carriers in direct space ... interlayer charge separation across interfaces

Perspectives and challenges of attosecond surface science

wir

From fs to attosecond spectroscopy

Attosecond streaking experiment with single attosecond pulses

Optics Express 25, 22 (2017)

IND

From fs to attosecond spectroscopy

Attosecond streaking experiment with single attosecond pulses

Optics Express 25, 22 (2017)

From fs to attosecond spectroscopy

Attosecond streaking experiment with single attosecond pulses

From fs to attosecond spectroscopy

Relative photoemission times in solids

3 step model

W. E. Spicer, *Phys. Rev.* **112** (1958) 114.

time-reversed

LEED state

From fs to attosecond spectroscopy Relative photoemission times in solids

3 step model

W. E. Spicer, *Phys. Rev.* **112** (1958) 114.

$|f_{LEED}\rangle$ 1. EUV $|i_{bulk}\rangle$ bulk vacuum

1 step model

G.D. Mahan, Phys. Rev. B **2** (1970) 4334.

Open Questions:

- What is the role of transport?
- How does the final state influence the photoemission time?
- What about the orbital momentum of the electrons

Z. Tao, et al., *Science*. **353** (2016) 62

MN

From fs to attosecond spectroscopy

4f and conduction-band spectrogram of single crystal tungsten

Attosecond streaking experiment in the condensed phase

From fs to attosecond spectroscopy

4f and conduction-band spectrogram of single crystal tungsten

Attosecond streaking experiment in the condensed phase

Nature 449, 1029-1032 (2007)

From fs to attosecond spectroscopy

Attosecond streaking experiment in the condensed phase

From fs to attosecond spectroscopy

From fs to attosecond spectroscopy

Κ

Attosecond streaking experiment in the condensed phase

Binding energy

Science 357, 1274 (2017)

From fs to attosecond spectroscopy

Continuous wave light source

Single attosecond pulse

No easy way to conduced attosecond streaking experiment for valence band structure

From fs to attosecond spectroscopy

RABBITT experiment

Attosecond streaking experiment in the condensed phase

Science. 353 (2016) 62

From fs to attosecond spectroscopy RABBITT experiment

Attosecond streaking experiment in the condensed phase

From fs to attosecond spectroscopy

RABBITT experiment

Gas phase (argon) Solid State(silver)

Science. 353 (2016) 62

R. Locher et al., Optica 2 (2015)
Towards Attosecond Surface Science Spectroscopy

From fs to attosecond spectroscopy RABBITT experiment Single HHG line HHG spectrum 24 22 20 Energy 18 18 16 Kinetic Energy [eV] -2-3 Kinetic -4 14 12 V(r) 10 -68 -7<u>-</u>0.4 -0.2 -0.2 0.2 -0.40.0 0.2 0.4 0.0 0.4 k [1/A] k [1/A] Is there no chance for RABBITT for valence states?

Science. 353 (2016) 62

R. Locher et al., Optica 2 (2015)

Towards Attosecond Surface Science Spectroscopy

Attosecond Momentum Microscopy

Towards Attosecond Surface Science Spectroscopy

Disentangle photoemission yield of different valence band states and HHG lines by their characteristic signatures in

- Energy
- Momentum space
- Spin

Outline

Ultrafast science in solids

- ... electrons in solids
- ... time-resolved photoemission spectroscopy

Monitoring....

.... the population dynamics of charge and spin carriers in momentum space ... the nature and spatial distribution of charge carriers in direct space ... interlayer charge separation across interfaces

Perspectives and challenges of attosecond surface science

wi