Physics of plasma mirrors in ultraintense laser fields

Fabien Quéré ELI-ALPS & PASQAL formerly CEA-Saclay *Naturally (or almost so) produced on initially solid targets by intense ultrashort laser pulses*

Why studying plasma mirrors?

Naturally (or almost so) produced on initially solid targets by intense ultrashort laser pulses

Plasma frequency

$$
\omega_p^2(x) = n_e e^2/m\mathcal{E}_0 > \omega_l^2
$$

with ne≈10²³ cm-3

• *Ideal model system to study the physics of ultrahigh intensity laser-plasma interaction* • *Optical elements to manipulate extreme laser intensities*

• *New sources of ultrashort pulses of light or particles at high energies*

Attosecond pulses from plasma mirrors

The non-linear PM response produces high-order harmonics, associated to trains of attosecond pulses in the time domain

Plaja *et al,* J. Opt. Soc. Am. B **15**(1998)

High-energy particles from plasma mirrors

Beams of relativistic electrons and high-energy ions are also produced

Thévenet *et al*, Nature Phys. **12**, 355 (2016)

A little bit of history: first HHG experiments

Observation of the broad high-order harmonic radiation in gas targets

A little bit of history: first HHG experiments

Laser HHG started in dense plasmas (NOT plasma mirrors?)

Los Alamos National Lab, early 80's

HHG from solid targets with intense *far-infrared*, *nanosecond* <mark>CO₂ lasers</mark> (λ=10 μm)

 $I \lambda^2 \rightarrow 10^{18}$ W/cm² μ m²

Gemini laser (power amplifier exit end)

R.L. Carman et al, Phys. Rev. Lett. **46** (1981); Phys. Rev. A **24** (1981) Burnett et al. Appl. Phys. Lett. 31 (3): 172–174 (1977)

Some promising early numerical and experimental results

Gordienko *et al*, Phys. Rev. Lett. **93** (2004) Dromey *et al*, Nature phys. **2** (2006) & Phys. Rev. Lett. **99** (2007) *PIC simulations* **Experiment Photon Energy, eV** $I \sim \omega^{-5/2}$ 2360 $a_{0}=10$ 1770 2950 3530 Intensity, a.u. 10^{10} Intensity/arb. units
Normalised at 1200th order
 $\frac{1}{2}$ 10^{8} n_{HO} 2600 $10⁶$ $n_{\rm HO} \approx 3000$ $10⁴$ $10²$ 10 1000 100 $\omega_{\rm n}/\omega_{\rm 0}$ a) $(1.5\pm.0.3)\times10^{20}$ Wcm⁻² $p=2.8$ b) $(2.5 \pm .0.5) \times 10^{20}$ Wcm⁻² Tsakiris *et al*, New J. Phys. **8** (2006) Prel=2.55 (+0.25, -0.15) 10^{-2} *PIC simulations* 2000 2500 1500 3000 Harmonic order, n $10[′]$ $l = \lambda/4$ *For a review until ≈ 2008 See Teubner & Gibbon, Rev. Mod. Phys. 81 (2009)*effici 10^{-5} 10^{-6} $(80\overline{200}$ eV) **VULCAN** 10^{-7} Cu **@RAL (UK)** $(400-1000-eV)$ $10¹$ **≈1 PW - 600 fs** 10 100 a_{I}

Outline

1- What tools?

- *Particle-In-Cell (PIC) codes*
- *Experimental tools*
	- *→ Plasma mirrors for contrast improvement*

2- HHG: basic physical mechanisms

- *Relativistic oscillating mirror (ROM)*
- *Coherent wake emission (CWE)*

3- Control (and metrology) of harmonic emission

- *Controlling the interface steepness*
- *Transient plasma gratings (& plasma holograms)*
- *Attosecond lighthouses*

Particle-in-Cell codes, a major tool for UHI physics

'UHI100' @ CEA-IRAMIS

P = 100 TW - E=2.5 J - T=25 fs - 10 Hz Final beam aperture ≈80 mm, $w_0 \approx 4 \mu m$ *I*l **² ≈** 5.10¹⁹ Wcm-2µm²

Beam conditionning

The issue of the temporal contrast of ultrashort lasers

Thin foil probed 1 ns **before** The main pulse, **Already destroyed !!!**

Optical switching using plasma mirrors

H.C. Kapteyn *et al*, Opt. Lett. **16** 490 (1991)

After the double plasma mirror…

Overall transmission of DPM : 50 % Duration and wavefront unaltered

Plasma mirrors in action

Plasma mirror after some shots

HHG: basic physical mechanisms

Relativistic Oscillating Mirror

ROM observed in simulations

Particle-in-Cell simulation: I=1.5 10¹⁹ W/cm² - L=l**/8**

Harmonic generation with a 1 TW-50 fs laser system (LUCA)

We tried an experiment that shouldn't have worked

yet it did work, and from it we learned a lot of physics !

…

Lesson to remember:

In experiments,

you should not always look for the effects you expect,

but also -sometimes- for things you absolutely do not expect

Back to PIC simulations

Coherent Wake Emission (CWE)

Experimental evidence: CWE & ROM

Similarity with short and long trajectories signals in gas HHG

Thaury *et al*, Nature Physics **3**, 424 (2007)

Summary: mechanisms and harmonic properties

Relativistic Oscillating Mirror

- *Doppler effect*
- *Harmonic cut-off depends on laser intensity*
- *Requires highest possible intensities (>10¹⁸ W/cm² .µm²)*
- *Attosecond (zepto?) pulses close to their Fourier limit*

Coherent Wake Emission

- *Linear mode conversion from plasma oscillations triggered by electron bunches*
- *Harmonic spectral cut-off = maximum plasma frequency α (plasma density) 1/2*
- *Only requires moderate intensities, >10¹⁶W/cm² .µm²*
- *Slightly chirped attosecond pulses*

Control and metrology of harmonic emission

Controlling and measuring the interface steepness

CWE to ROM transition for varying interface steepness

I=10¹⁸ W/cm²

Experimental results

Kahaly et al PRL **110** (2013)

Transition to chaotic dynamics

Chopineau et al, Phys. Rev. X 9, 011050 – (2019) Blaclard et al, Phys. Rev. E 107, 034205 (2023)

Transient plasma gratings: key idea

Transient plasma gratings: key idea

Plasma gratings

Monchocé et al, Phys. Rev. Lett. **112,** 145008 (2014)

Ptychographic measurement of the harmonic source *hydrodynamic spatial profile (amplitude and phase)*

simulations Leblanc et al, Nature Physics **12**, 301–305 (2016) Leblanc et al, Phys. Rev. Lett. 119, 155001 (2017)

Plasma holograms

Leblanc et al, Nature Physics **13**, 440–443 (2017)

Intense femtosecond pulse

> Train of attosecond pulses

Plasma mirror

Spatio-temporal control: the attosecond lighthouse effect

Focusing a 'normal' pulse

Focusing a pulse with pulse front tilt

Experimental demonstration

Footprint of the XUV « harmonic » beam in the far field as a function of the laser pulse CEP

Wheeler et al, *Nature Photonics* **6**, 828-832 (2012) Kim et al, Nature Photonics 7, 651–656 (2013)

Advanced metrology: attosecond temporal measurements

Many were topics not covered here

- ✓ *Different theoretical models of relativistic harmonic generation, and associated controversy*
- ✓ *Spatial and spectral phase properties of harmonics and associated models*
- ✓ *Approaches for spatial and temporal metrology, e.g. ptychography*
- ✓ *Optimization and control of harmonic emission (/2 , CEP, vortex beams….)*
- ✓ *Temporal gating techniques for the generation of isolated attosecond pulses*
- ✓ *Electron acceleration: using plasma mirrors as injectors for Vacuum Laser Acceleration or laser wakefield acceleration*
- ✓ *Transition to chaotic dynamics when the plasma interface gets smoother*

Conclusion & perspectives

Considerable progress in the last 15 years

- *Good understanding of the harmonic generation mechanisms*
- *Major advance in control and metrology of harmonics/atto pulses*

[→] *Rich physics, insight into ultrahigh intensity interactions*

[→] *Future attosecond sources complementary to HHG in gases?*

→ Developments of more compact ultraintense laser sources, higher rep rates, new target technologies

[1 kHz, 1.5-cycle, 780 nm, 1 TW] @

[1 kHz, 3-cycle, 900 nm, 5-15 TW] @

Y. H. Kim *et al.*, *Nature Comms.* **14**, 2328 (2023)

SHHG beamline @ ELI-ALPS

SourceLAB | Laser Plasma Technologies

SHHG beamline @ ELI-ALPS

Fundamental physics with PW lasers?

What questions in fundamental physics can be addressed with high-power lasers?

The present record in laser intensity is 'only' $\approx 10^{23}$ W/cm² Yoon et al, Optica **8**, 630–635 (2021)

Potential solution: reflection off curved relativistic mirror

[→] *The Curved Relativistic Mirror (CRM) concept*

(i) Intensification by temporal compression Landecker, **86**, 852 Phys. Rev. (1952) (ii) Intensification by spatial focusing to a tighter spot $(\lambda << \lambda_L)$ Bulanov et al, PRL **91**, 095001 (2003)

> **But how to actually implement this in the lab? This might be achieved with plasma mirrors**

Validation by **3D** PIC simulations: case of a **3 PW laser**

3D pseudo-spectral PIC simulation with WARP-PICSAR (≈20.10⁶ CPU hours) \rightarrow INCITE program - MIRA supercomputer @ Argonne lab

Compressed Atto pulse: 5.5J, 100as, 350nm \rightarrow **I=10**²⁵**W/cm**² **Only 30 harmonic orders contribute to the intensity gain !**

Relativistic plasma mirrors : a feasible implementation of a CRM

What are the maximum intensities achievable with this scheme?

Achievable intensities with curved relativistic plasma mirrors

Contributors

CEA

Cédric Thaury Henri Vincenti Sylvain Monchocé Adrien Leblanc Ludovic Chopineau Guillaume Bouchard Guillaume Blaclard Subhendu Kahaly Adrien Denoeud Philippe Martin

Collaborators

LOA R. Lopez-Martens J. Faure M. Thévenet J. Wheeler A. Borot A.Malvache

> *LULI J-P. Geindre*

> > *DPTA L. Videau P. Combis*

Laser operation (CEA) F. Réau C. Pothier

D. Garzella P. d'Oliveira

