Physics of plasma mirrors in ultraintense laser fields

Fabien Quéré <u>ELI-ALPS</u> & PASQAL formerly CEA-Saclay Naturally (or almost so) produced on initially solid targets by <u>intense ultrashort</u> laser pulses

Why studying plasma mirrors?

Naturally (or almost so) produced on initially solid targets by <u>intense ultrashort</u> laser pulses

Plasma frequency

$$\omega_p^2(x) = n_e e^2 / m \mathcal{E}_0 >> \omega_L^2$$

with $n_e \approx 10^{23} \text{ cm}^{-3}$

Applications

• Ideal **model system** to study the physics of ultrahigh intensity laser-plasma interaction • Optical elements to manipulate extreme laser intensities

• New sources of ultrashort pulses of light or particles at high energies

Attosecond pulses from plasma mirrors

The non-linear PM response produces high-order harmonics, associated to trains of attosecond pulses in the time domain

Plaja et al, J. Opt. Soc. Am. B 15(1998)

High-energy particles from plasma mirrors

Beams of relativistic electrons and high-energy ions are also produced

Thévenet et al, Nature Phys. 12, 355 (2016)

A little bit of history: first HHG experiments

Observation of the broad high-order harmonic radiation in gas targets

A little bit of history: first HHG experiments

Laser HHG started in dense plasmas (NOT plasma mirrors?)

Los Alamos National Lab, early 80's

HHG from solid targets with intense far-infrared, nanosecond <u>CO₂ lasers</u> (λ=10 μm)

 $I \lambda^2 \rightarrow 10^{18} \text{ W/cm}^2 \, \mu\text{m}^2$

Gemini laser (power amplifier exit end)

Burnett et al. Appl. Phys. Lett. 31 (3): 172–174 (1977) R.L. Carman et al, Phys. Rev. Lett. **46** (1981); Phys. Rev. A **24** (1981)

Some promising early numerical and experimental results

Gordienko et al, Phys. Rev. Lett. 93 (2004) Dromey et al, Nature phys. 2 (2006) & Phys. Rev. Lett. 99 (2007) **PIC** simulations Experiment Photon Energy, eV 10^{1} $I \sim \omega^{-5/2}$ 1770 2360 2950 _=10 3530 Intensity, a.u. 1010 Intensity/arb. units Normalised at 1200th order 10^{8} *n_{B0}*≈ 2600 106 *n_{R0}≈*_3000 104 10^{2} 1000 10 100 ω_n / ω_0 a) $(1.5\pm.0.3)\times10^{20}$ Wcm⁻² p=2.8 -b) (2.5±.0.5)×10²⁰Wcm⁻² Tsakiris et al, New J. Phys. 8 (2006) Prel=2.55 (+0.25, -0.15) **10**⁻² **PIC** simulations 2500 1500 2000 3000 Harmonic order, n 10° $l = \lambda/4$ For a review until ≈ 2008 See Teubner & Gibbon, Rev. Mod. Phys. 81 (2009) effici 10⁻⁵ Zt 10⁻⁶ (80-200eV) **VULCAN** 10 Cu @RAL (UK) (400-1000-eV) 10 ≈1 PW - 600 fs 10 100 a_{L}

Outline

1- What tools?

- Particle-In-Cell (PIC) codes
- Experimental tools
 - \rightarrow Plasma mirrors for contrast improvement

2- HHG: basic physical mechanisms

- Relativistic oscillating mirror (ROM)
- Coherent wake emission (CWE)

3- Control (and metrology) of harmonic emission

- Controlling the interface steepness
- Transient plasma gratings (& plasma holograms)
- Attosecond lighthouses

Particle-in-Cell codes, a major tool for UHI physics

'UHI100' @ CEA-IRAMIS

<u>P = 100 TW</u> - E=2.5 J - τ=25 fs − 10 Hz Final beam aperture ≈80 mm, $w_0 \approx 4 \mu m$ $I\lambda^2 \approx 5.10^{19} W cm^{-2} \mu m^2$

Beam conditionning

The issue of the temporal contrast of ultrashort lasers

Thin foil probed 1 ns <u>before</u> The main pulse, Already destroyed !!!

Optical switching using plasma mirrors

H.C. Kapteyn et al, Opt. Lett. 16 490 (1991)

After the double plasma mirror...

Overall transmission of DPM : 50 % Duration and wavefront unaltered

Plasma mirrors in action

Plasma mirror after some shots

HHG: basic physical mechanisms

Relativistic Oscillating Mirror

Lichters et al, Phys. Plasmas 3 (1996)

ROM observed in simulations

Particle-in-Cell simulation: I=1.5 10¹⁹ W/cm² - L= $\lambda/8$

Harmonic generation with a 1 TW-50 fs laser system (LUCA)

F.Quéré et al, Phys. Rev. Lett. 96, 125004 (2006)

We tried an experiment that shouldn't have worked

yet it did work, and from it we learned a lot of physics !

Lesson to remember:

In experiments,

you should not always look for the effects you expect,

but <u>also</u> -sometimes- for things you absolutely do not expect

Back to PIC simulations

Coherent Wake Emission (CWE)

Experimental evidence: CWE & ROM

Similarity with short and long trajectories signals in gas HHG

Thaury et al, Nature Physics **3**, 424 (2007)

Summary: mechanisms and harmonic properties

Relativistic Oscillating Mirror

- Doppler effect
- Harmonic cut-off depends on laser intensity
- *Requires highest possible intensities (>10¹⁸ W/cm².µm²)*
- Attosecond (zepto?) pulses close to their Fourier limit

Coherent Wake Emission

- Linear mode conversion from plasma oscillations triggered by electron bunches
- Harmonic spectral cut-off = maximum plasma frequency α (plasma density)^{1/2}
- Only requires moderate intensities, >10¹⁶ W/cm².µm²
- Slightly chirped attosecond pulses

Control and metrology of harmonic emission

Controlling and measuring the interface steepness

CWE to ROM transition for varying interface steepness

I=10¹⁸ W/cm²

Experimental results

Laser UHI 100 (CEA) 25 fs 100 TW

Kahaly et al PRL **110** (2013)

Transition to chaotic dynamics

Chopineau et al, Phys. Rev. X 9, 011050 – (2019) Blaclard et al, Phys. Rev. E 107, 034205 (2023)

Transient plasma gratings: key idea

Transient plasma gratings: key idea

Plasma gratings

Monchocé et al, Phys. Rev. Lett. 112, 145008 (2014)

Ptychographic measurement of the harmonic source spatial profile (amplitude and phase)

Leblanc et al, Nature Physics **12**, 301–305 (2016) Leblanc et al, Phys. Rev. Lett. **119**, 155001 (2017)

Plasma holograms

Leblanc et al, Nature Physics 13, 440–443 (2017)

Intense femtosecond pulse

Train of attosecond pulses

Plasma mirror

Spatio-temporal control: the attosecond lighthouse effect

Focusing a 'normal' pulse

Focusing a pulse with pulse front tilt

Experimental demonstration

Footprint of the XUV « harmonic » beam in the far field as a function of the laser pulse **CEP**

Wheeler et al, *Nature Photonics* **6**, 828-832 (2012) Kim et al, Nature Photonics 7, 651–656 (2013)

Advanced metrology: attosecond temporal measurements

Many were topics not covered here

- ✓ Different theoretical models of relativistic harmonic generation, and associated controversy
- ✓ Spatial and spectral phase properties of harmonics and associated models
- ✓ Approaches for spatial and temporal metrology, e.g. ptychography
- \checkmark Optimization and control of harmonic emission ($\omega/2\omega$, CEP, vortex beams....)
- ✓ Temporal gating techniques for the generation of isolated attosecond pulses
- Electron acceleration: using plasma mirrors as injectors for Vacuum Laser Acceleration or laser wakefield acceleration
- ✓ Transition to chaotic dynamics when the plasma interface gets smoother

Conclusion & perspectives

Considerable progress in the last \approx 15 years

- Good understanding of the harmonic generation mechanisms
- Major advance in control and metrology of harmonics/atto pulses

→ Rich physics, insight into ultrahigh intensity interactions

→ Future attosecond sources complementary to HHG in gases?

→ Developments of more compact ultraintense laser sources, higher rep rates, new target technologies

[1 kHz, 1.5-cycle, 780 nm, 1 TW] @

[1 kHz, 3-cycle, 900 nm, 5-15 TW] @

Y. H. Kim et al., Nature Comms. 14, 2328 (2023)

SHHG beamline @ ELI-ALPS

SourceLAB | Laser Plasma Technologies

SHHG beamline @ ELI-ALPS

Fundamental physics with PW lasers?

What questions in fundamental physics can be addressed with high-power lasers?

- Intensities $> 10^{25}$ W/cm²-10²⁹ W/cm² are needed
- The present record in laser intensity is 'only' ≈10²³ W/cm² Yoon et al, Optica **8**, 630–635 (2021)

Potential solution: reflection off curved relativistic mirror

→ The Curved Relativistic Mirror (CRM) concept

(i) Intensification by temporal compression
Landecker, 86, 852 Phys. Rev. (1952)
(ii) Intensification by spatial focusing to a tighter spot (λ << λ_L)
Bulanov et al, PRL 91, 095001 (2003)

But how to actually implement this in the lab? ⇒ This might be achieved with plasma mirrors

Validation by 3D PIC simulations: case of a 3 PW laser

3D pseudo-spectral PIC simulation with WARP-PICSAR (≈20.10⁶ CPU hours) → INCITE program - MIRA supercomputer @ Argonne lab

Compressed Atto pulse: 5.5J, 100as, 350nm \rightarrow I=10²⁵W/cm² Only 30 harmonic orders contribute to the intensity gain !

Relativistic plasma mirrors : a feasible implementation of a CRM

What are the maximum intensities achievable with this scheme?

Achievable intensities with curved relativistic plasma mirrors

Contributors

CEA

Cédric Thaury Henri Vincenti Sylvain Monchocé Adrien Leblanc Ludovic Chopineau Guillaume Bouchard Guillaume Blaclard Subhendu Kahaly Adrien Denoeud Philippe Martin

Collaborators

<u>LOA</u> R. Lopez-Martens J. Faure M. Thévenet J. Wheeler A. Borot A.Malvache

> <u>LULI</u> J-P. Geindre

> > <u>DPTA</u> L. Videau P. Combis

Laser operation (CEA) F. Réau C. Pothier

D. Garzella P. d'Oliveira

