

A brief history of plasma accelerators

Victor Malka

Weizmann Institute of Science, Rehovot, Israel ELI-NP, Magurele, Romania

https://www.weizmann.ac.il/complex/malka/

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

Accelerators: One century of exploration of the infinitively small

Industrial Market for Accelerators

The development of state of the art accelerators for HEP has lead to : research in other field of science (light source, spallation neutron sources...) industrial accelerators (cancer therapy, ion implant., electron cutting &welding...)

Application	Total syst. (2007) approx.	System sold/yr	Sales/yr (M\$)	System price (M\$)
Cancer Therapy	9100	500	1800	2.0 - 5.0
Ion Implantation	9500	500	1400	1.5 - 2.5
Electron cutting and welding	4500	100	150	0.5 - 2.5
Electron beam and X rays irradiators	2000	75	130	0.2 - 8.0
Radio-isotope production (incl. PET)	550	50	70	1.0 - 30
Non destructive testing (incl. Security)	650	100	70	0.3 - 2.0
lon beam analysis (incl. AMS)	200	25	30	0.4 - 1.5
Neutron generators (incl. sealed tubes)	1000	50	30	0.1 - 3.0
Total	27500	1400	3680	

Plasma Accelerators : motivations

E-field_{max} ≈ few 10 MeV /meter (Breakdown) R>R_{min} Synchrotron radiation

 \rightarrow New medium : the plasma

VOLUME 43, NUMBER 4 PHYSICAL REVIEW LETTERS

23 JULY 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Such a wake is most effectively generated if the length of the electromagnetic wave packet is half the wavelength of the plasma waves in the wake:

$$L_t = \lambda_w / 2 = \pi c / \omega_p \,. \tag{2}$$

An alternative way of exciting the plasmon is to inject two laser beams with slightly different frequencies (with frequency difference $\Delta \omega \sim \omega_p$) so that the beat distance of the packet becomes $2\pi c/\omega_p$. The mechanism for generating the wakes => Laser wakefield

=> Laser beatwave

The linear wakefield regime: GV/m electric field

The laser wake field : broad resonance condition $T_{\text{laser}} \sim \pi/\omega_p$ with $\omega_p \sim n_e^{1/2}$ i.e. $\lambda_p \sim 1/n_e^{1/2}$

electron density perturbation & longitudinal wakefield

Compactness of Laser Plasma Accelerators

RF Cavity

Plasma Cavity

1 m => 50 MeV Gain 1mm => 100 MeV Electric field < 100 MV/m Electric field > 100 GV/m A. Pukhov & J. Meyer-ter-Vehn, Appl. Phys. B **74**, 355-361 (2002) V. Malka *et al.*, Science **298**, 1596 (2002)

Injection criteria : the surfer

Injection criteria : the surfer

conclusions :

- Trapped orbits allow higher energy gain
- One needs to transmit enough velocity ΔV

Injection criteria : the surfer

In plasma wave :

- E field is not homogenous
- Volume is phase space is conserved
- very small initial volume

external injection :

- Size≈ µm
- Length≈ µm (fs)
- Synchronization \approx fs
- Controle ?
- => very challenging with conventional accelerator

Trapping energy : analogy electron/surfer

surfer with enough initial velocity

Trapping energy : analogy electron/surfer

High beam quality: precise controlled on inject.

In plasma wave :

- E field is not homogenous
- Volume is phase space is conserved
- very small initial volume

External injection :

- Size≈ µm
- Length≈ µm (fs)
- Synchronization \approx fs
- Controle ?

=> very challenging with conventional accelerator

Injection schemes: how to cross the separatrix

Colliding laser pulses: linear polarisation External injection, Wavebreaking Cold injection: dephasing of electrons

Colliding laser pulses: circular polarisation Longitunal injection/self truncated ionisation Transverse wave breaking

V. Malka, Phys. of Plasmas 19, 055501 (2012)

1992-1994 Accelerated electrons in LBWF

M. Everett et al., Nature 1994

Electron gain demonstration Few MeV's: Kitagawa et al. PRL 1992, Clayton et al. PRL 1993, N. A. Ebrahim et al., J. Appl. Phys. 1994, Amiranoff et al. PRL 1995

1998 Accelerated electrons in LWF

7540

The 3-MeV electrons are accelerated up to \approx 4.5 MeV Electron spectra indicate an E_{field} of \approx 1.4 GV/m

F. Amiranoff et al., PRL 1998

1995 Accelerated electrons in SLWF

- Multiple satellites : high amplitude plasma waves
- Broadening at higher densities
- Loss of coherence of the relativistic plasma waves

A. Modena et al., Nature (1995)

DLA/LPWF debate in 1999/2001

12/0

Spectra : E_{max} increases/decreases when n_e decreases

C. Gahn et al., PRL 83, 23 (1999), V. Malka et al., Phys. of Plasmas 8, 6 (2001)

2002 the NL regime: 100s GV/m electric field

V. Malka et al., Science 298, 1596 (2002)

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

The Forced laser wakefield

2004 The Bubble regime : theory/experiments

J. Faure et al., Nature 431, 7008 (2004)

2004 The Dream Beam

Monoenergetic beams of relativistic electrons from intense laser–plasma interactions

S. P. D. Mangles¹, C. D. Murphy^{1,2}, Z. Najmudin¹, A. G. R. Thomas¹, J. L. Collier², A. E. Dangor², E. J. Dival², P. S. Foster², J. G. Gallacher³, C. J. Hooker², D. A. Jaroszynski³, A. J. Langley², W. B. Mort⁴, P. A. Norreys³, F. S. Tsung⁴, R. Viskuy³, B. R. Walton³ & K. Kushelnick¹

¹The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK ²Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

³Department of Physics, University of Strathdyde, Glasgow G4 0NG, UK ⁴Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA

High-quality electron beams from 1 laser wakefield accelerator using plasma-channel guiding

C. G. R. Geddes^{1,2}, Cs. Toth^1, J. van Tilborg^{1,3}, E. Esarey^1, C. B. Schroe $\,$ er^1, D. Bruhwiler^4, C. Nieter^4, J. Cary^{4,5} & W. P. Leemans^1

¹Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, Calij rrnia 94720, USA ²University of California, Berkeley, California 94720, USA ³Tedrnische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, the Netherlands ⁴Tedr-X Corporation, 5621 Arapahoe Ave. Suite A, Boulder, Colonado 80303, USA ⁴Tedr-X Corporation, Boulder, Colorado 80309, USA

A laser–plasma accelerator producing monoenergetic electron beams

J. Faure¹, Y. Glinec¹, A. Pukhov², S. Kiselev², S. Gordienko², E. Lefebvre³, J.-P. Rousseau¹, F. Burgy¹ & V. Malka¹

¹Labontoine d'Optique Appliquée, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaissau, France ¹Institut fur Theoretische Physik, 1, Heinrich-Heine-Universitat Duesseldorf, 40225 Duesseldorf, Germany ³Département de Physique Théorique et Appliquée, CEA/DAM Ile-de-France, 91680 Bruyéers-le-Châtel, France

SMLWF => FLWF => Bubble regime

V. Malka et al., Phys. of Plasmas 12, 5 (2005)

Colliding Laser Pulses Scheme

The first laser creates the accelerating structure A second laser beam is used to heat electrons

E. Esarey et al., PRL 19, 2682 (1997)

Towards a Stable Laser Plasma Accelerators

Series of 28 consecutive shots with : $a_0=1.5$, $a_1=0.4$, $n_e=5.7 \times 10^{18}$ cm⁻³

Tunability of the electrons energy

J. Faure et al., Nature 444, 737 (2006)

Tunability of charge & energy spread

Charge : controlling electrons heating processes => smaller a_{inj.} means less heating and less trapping

Energy spread: Decreasing the phase space volume V_{trap} of trapped electrons by reducing $a_{inj.}$ or by reducing $c\tau/\lambda_p$ by changing n_e (i.e λ_p)

Evolution of injection volume with a_1 for $a_0 = 2$, $n_e = 7 \times 10^{18}$ cm⁻³. Fields are computed for the 1D case and the beatwave separatrix corresponds to the circular polarization case.

In practice, energy spread and charge are correlated: Decreasing a_1 decreases the charge but also V_{trap} , and in consequence the energy spread

Tuning charge & energy spread with I_{inj.laser}

Charge from 60 pC to 5 pC, ΔE from 20 to 5 MeV

C. Rechatin et al., Phys. Rev. Lett. 102, 164801 (2009)

Tuning charge & energy spread with n_e

ΔE=10.0 MeV

Beam loading effect

Parameters: $n_e=1.5 \ 10^{19} cm^{-3}$, $\tau =35 fs$, E=0.6J, I=2 $10^{18} W/cm^2$

Laser wakefield $n_e=7 \ 10^{18} cm^{-3}$, $\tau = 30 fs$, $a_0 = 0.5$

E-beam wakefield $n_b/n_e=0.11$, $\tau = 10$ fs, $d_{FWHM}=4\mu m$ (Q=7pC)

The end of the bunch experiments a modified wakefield

Limitation of the accelerated charge Influence on energy and energy spread

Observables : correlation charge/energy spread/energy

T. Katsouleas et al., (1987), M. Tzoufras et al., Phys. Rev. Lett., 101 (2008)

Beam loading effect

Clear correlation !

Nb: very few electrons at low energy $\delta \text{E/E}{=}5\%$ limited by the spectrometer

Beam loading effect: 1% energy spread

C. Rechatin et al., Phys. Rev. Lett. 102, 194804 (2009)

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

1.5 fs RMS duration: Peak current of 4 kA

O. Lundh et al., Nature Physics, 7 (2011)

Density drop: increase of the cavity lenght which allows injection

Sharp density ramp is requires to localize the injection and reduce the energy spread !

Schmid et al., 2010; Buck et al., 2013

Density drop: increase of the cavity lenght which allows injection

Sharp density ramp is requires to localize the injection and reduce the energy spread !

Density drop: increase of the cavity lenght which allows injection

Sharp density ramp is requires to localize the injection and reduce the energy spread !

Electrons

3.5 <u>×10</u>¹⁹

0 L -2

-1.5

 $\mathrm{Divergence} = 2.0 \pm 0.3 \ \mathrm{mrad}$

Electron energies is controlled by the position of the blade

C. Thaury et al., Scientific Reports 5.16310 (2015)

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

Dual-energy electron beams

J. Wenz et al., Nature Photonics 13 (2019)

Quasi-monoenergetic electron beams using optical shock injection

Optical shock injection at LOA, n_e=10¹⁹ cm⁻³, t=2 ns, and I_I=1.5x10¹⁷ W/cm²

J. Faure et al., PoP 17, 083107 (2010)

Self Truncated ionization injection: highest charge

Energy spectra of 15 consecutive shots. Obtained with 1.6 mm-long plasma at 3.1×10¹⁸ cm⁻³, 1% nitrogen doping and 2.5J/30fs laser

J. P. Couperus et al., Nature Comm. 8, 487 (2017)

Booster

Since the laser group velocity is < c, when electrons energy is getting $\sim c$ they dephase

electrons reach the center of the cavity and start to be deccelerated

Since the laser group velocity is < c, when electrons energy is getting $\sim c$ they dephase

electrons reach the center of the cavity and start to be deccelerated

Katsouleas et al., 1986; Sprangle et al., 2001

Experimental set-up

Longitudinal phase space manipulation

Experimental results

Calder-Circ PIC Simulations

INSTITUTE OF SCIENCE

E. Guillaume et al., PRL 115 (2015)

Energy booster

E. Guillaume et al., PRL 115 (2015)

European Innovation Council

E. Guillaume et al., PRL 115 (2015)

E. Guillaume et al., PRL 115 (2015)

E. Guillaume et al., PRL **115** (2015) A. Döpp et al., PoP **23** 056702 (2016)

15 MeV QM e⁻ beam with kHz-mJ laser

electron beam @ 15 MeV produced at 1-kHz repetition rate 2.5-pC charge with <7-mrad beam divergence 5-fs - 2.7 mJ laser incident Thin, near-critical-density hydrogen gas jet. (from Milchberg group)

Average electron spectrum over 20 shots And two typical single-shot electron spectra (for L2 and L3) at 7.7 x10¹⁹ cm⁻³ and <5-fs LWS-20 pulses (from L. Veisz group)

F. Salehi al., Phys. Rev. X 11, 021055 (2021)

D. E. Cardenas al., Phys. Rev. AB 23 (2020)

Stable & continuous operation

kHz-mJ- 5fs laser system at LOA (France)

1 Hz - 3J 40 fs laser system at DESI (Germany)

A. R. Maier et al., Phys. Rev. X 10, 031039 (2020), L. Rovige et al., Phys. Plasmas 28, 3 (2021)

8 GeV energy gain in 20 cm @ LBNL

Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide

Acceleration in a laser generated waveguide

K. Oubrerie et al., Light Sci. & Appl. 11, 180 (2022)

Controlled injection in a plasma waveguide

Quasi Mono energetic electron beam @ more than GeV with 50 TW laser with few pC

K. Oubrerie et al., Light Sci. & Appl. 11, 180 (2022)

Free-electron lasing at 27 nanometres based on a LWFA

200-TW laser system with a repetition rate of 1–5 Hz, 3.8×10^{18} W/cm², $a_0 = 1.3$ on 6mm supersonic helium gas jet with a structured gas flow with a shock front to control injection with e-beam average energy of 490 MeV, an energy spread of around 0.5%, an average integrated charge of around 30 pC, and r.m.s. divergence of 0.2 mrad.

W. Wang et al., Nature **595**, 516 (2021) See also M. Labat et al., Nature Photonics 2022

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

First FEL lasing from a beam driven plasma accelerator

R. Pompili et al., Nature 605, 659 (2022)

Superluminal Acceleration - Principle

-

- Acceleration with a diffraction-free superluminal laser beam.
- Overcoming diffraction, dephasing and depletion.

C. Caizergues et al., Nature Photonics 14, 475-479 (2020)

Superluminal Acceleration - Principle

- Acceleration with a diffraction-free superluminal laser beam.
- Overcoming diffraction, dephasing and depletion.

C. Caizergues et al., Nature Photonics 14, 475-479 (2020)

Superluminal Acceleration - Simulations

- Acceleration with a diffraction-free superluminal laser beam.
- Overcoming diffraction, dephasing and depletion.

Accelerating fields

1.6 GeV (1 J, 15 fs laser

C. Caizergues et al., Nature Photonics 14, 475-479 (2020)

Superluminal Accel. – Scaling laws

- Acceleration with a diffraction-free superluminal laser beam.
- Overcoming diffraction, dephasing and depletion.

C. Caizergues et al., Nature Photonics 14, 475–479 (2020), J. Palastro et al., Phys. Rev. Lett. 124, 134802 (2020), A. Debus et al., Phys. Rev. X 9, 031044 (2019)

Strong Field QED: towards unexplored regime

The χ_e and ξ parameter space accessible by various experiments, and on right, the relative electron energy lose $\Delta E/E_0$ as a function of the interacting intense laser. The dashed black line corresponds to the value $\chi_e = 1$, where χ_e is the ratio between the maximal laser electric field amplitude in the electron rest frame and the critical Schwinger field

*M. Vranic et al., Phys. Rev. Lett. 113, 134801 (2014)

An insight of Non-Linear Laser Wakefield

Funded by the

European Union

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

Y. Wan et al., Science Advanced eadj3595 (2024), Light: Science & Applications 12 (1), 116 (2023), Nature Physics (2022),

ELI Summer School, Szeged, Hungary, September 2-6 (2024)

Conclusion & perspectives

- LPAs are delivering stable and high-quality electron beams
- ✓ Few J/ 30fs / 10 Hz lasers deliver in routine high-quality e-beam at 100s MeV
- ✓ Few mJ/ few fs/ kHz lasers deliver in routine high-quality e-beam in 10s MeV
- ✓ Few 10s of J/ 30fs/ 1 Hz lasers deliver GeV-10 GeV e beam
- Impressive progresses have been done in guiding intense laser pulse, but high-quality beams are not yet there
- LPAs are mature for delivering compact X ray sources such as Thomson, Compton, Betatron, and now FEL
- ✓ LPAs are mature to challenge applications in security, radiotherapy, ultrafast phenomena studies, etc...
- ✓ LPAs are pertinent for High Fields Sciences

Conclusion & perspectives

- New diagnostics are helping in getting better temporal and spatial resolutions
- New numerical schemes, genetic algorithms and artificial intelligent also appeared these 10 years
- Laser technology is proposing more products opening also new direction of research
- ✓ More than one 100 University labs,
- ✓ Crucial in the major projects such as ELIs, LBNL, APOLLON, SIOM, CORELS, KIST, etc...
- All together this indicates a vivant area of research with a bright and exciting future.

Visit us at ELI NP

or at WIS

