Development of Applications for Laser Wakefield Acceleration

Olle Lundh

Department of Physics, Lund University, Sweden

Extreme Light Infrastructure Summer School

ELI ALPS Facility, Szeged, Hungary

LUND LASER CENTRE

2-6 September 2024

ALLENBERG ACADEMY

Lund Laser Centre

Lasers at the Lund High Power Facility

OPCPA: Optical parametric chirped pulse amplification SWIR: Short wave infrared

Laser-plasma acceleration and X-ray generation

Why particle accelerators matter

Discovery Science

Particle accelerators are essential tools of discovery for particle and nuclear physics and for sciences that use x-rays and neutrons.

Medicine

Tens of millions of patients receive accelerator-based diagnoses and therapy each year in hospitals and clinics around the world.

Industry

Worldwide, hundreds of industrial processes use particle accelerators – from the manufacturing of computer chips to the cross-linking of plastic for shrink wrap and beyond.

Security

Particle accelerators play an important role in ensuring security, including cargo inspection and materials characterization.

Surfing the wake wave

Setup for shock-front injection

Cornelia did this experiment

Beam quality and tunability

Setup for colliding pulse injection

Pump laser: 500 mJ, 40 fs, 3×10^{18} W/cm² **Injection laser:** 40 mJ, 40 fs, 1×10¹⁸ W/cm²

Hansson *et al*, NIMA 829, 99-103 (2016) *Martin did the experiment*

Beam quality and tunability

Hansson *et al*, NIMA 829, 99-103 (2016)

Outline

Controlled injection and acceleration

High energy electrons for radiotherapy

X-rays for (time-resolved) tomography

Hard X-rays for radiography

Towards laser-based FELs

Number of radiotherapy machines per million citizens

Low energy electron radiotherapy

Underlying structures spared

Stopping power and dose

Low energy electrons primarily lose energy through **collisions** which leads to **ionization** and **excitation**. Contributes to the dose **near the track**.

High-energy electrons primarily lose energy by **radiation** (**bremsstrahlung).** Energy spent is **carried away** from the track by photons.

The stopping power is the mean rate of energy loss

Water

 10^{-1}

 10^{0}

10¹

 10^{2}

where
$$
\Phi
$$
 is particle flux density

Databases ESTAR and PSTAR calculate stopping-power for electrons and protons fr many materials https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions

Dose deposition for different particles

Low energy electrons < 20 MeV widely used for superficial tumours High energy electrons > 100 MeV not yet available in hospitals Can high-energy electrons be useful for radiotherapy?

Potential advantage of high energy electrons

VHEE Very High Energy Electrons

Compared to X rays (IMRT, VMAT), high-energy electrons (100-200 MeV) can give

- Similar coverage of the target volume
- Better sparing of critical structures and organs at risk

Experimental setup

Lundh *et al*, Medical Phys. 39, 3501-3508 (2012)

Measured and simulated dose

Lundh *et al*, Medical Phys. 39, 3501-3508 (2012)

Laser-accelerated VHEE's for radiotherapy?

Treatment plan

Total treatment dosage: 20-80 Gy Fractional daily dosage: 2 Gy/day

Laser-plasma beam

1 Gy/shot over $2x2$ mm² 200 shots (20 s): 2 Gy over 20x20 mm² Reasonable numbers

Impact of inhomogeneities

- Inhomogeneities (air bubbles, bone, etc.) can negatively impact the dose delivered compared to the dose plan.
- This simulation study shows that the dose deposition by high-energy electrons is less sensitive to inhomogeneities when compared to protons and x-rays. This effect is also confirmed by dose measurements.

A. Lagzda, Ph.D. Thesis, 2019

Focused electron beams

Contrary to X-rays, electrons can be magnetically focused to increase the dose at depth. In this simulation study, the influence of the focusing geometry and focusing depth is explored.

K. Kokurewicz *et al.*, Sci Rep **9**, 10837 (2019)

Beam shaping using EMQ magnets

Jonas designed the beamline

Dose deposition by focused electrons beams

Changing focal plane changes the dose distribution

Kristoffer did the measurements

Multiple irradiation angles Focused electron beam EBT3 film stack Rotation **Phantom stack Simulation** Simulation using Fluka **Measurement – concave volume** *36 angles, 10 pulses/angle Layers at different heights from beam center* -2.4 mm -0.3 mm 0 mm 0.3 mm 2.4 mm $80 \; \text{mm}$

K. Svendsen *et al*, Sci Reports **11**, 5844 (2021)

Towards stereotactic radiotherapy

Purpose of stereotactic radiotherapy is very precise delivery of the dose to the target volume

K. Svendsen *et al*, Sci Reports **11**, 5844 (2021)

The therapeutic window

The therapeutic window in radiotherapy refers to the delicate **balance** between the **dose required to effectively treat** a cancerous tumor and the **dose that can cause harm** to normal, healthy cells in the surrounding tissue.

Increasing the therapeutic window improves the treatment

Perspectives for FLASH therapy

FLASH therapy is the delivery of very high dose rates (>40 Gy/s)

FLASH effect provides better sparing of healthy tissue

not yet completely understood

Femtosecond electron bunches from LWFA

 \triangleright Allow radiobiological studies at ultra-high dose rates

¾ High repetition rate might be needed for studies of the FLASH effect (high dose (many Gy) in short time $(\sim 100 \text{ ms})$)

Seminal paper

V Favaudon *et al., "Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice"*, Science Transl. Med. **6** (2014)

Review articles

M Kim *et al*, IEEE Transactions on Radiation and Plasma Medical Sciences **6** (2021) Hughes and Parsons, Int. J. Molecular Sciences **5** (2020)

Kristoffer Petersson, *Oxford Univ*

Outline

Controlled injection and acceleration

High energy electrons for radiotherapy

X-rays for (time-resolved) tomography

Hard X-rays for radiography

Towards laser-based FELs

Betatron X-ray source

S Corde *et al*, *"Femtosecond x rays from laser-plasma accelerators",* Rev Mod Phys **85**, (2013)

Undulator and wiggler regimes

 ψ Maximum angle of the electron velocity vector

 $\Delta\theta = 1/\gamma$ Opening angle of the radiation cone

 $K = \gamma \psi$ Dimensionless parameter separating the regimes

S Corde *et al*, Rev Mod Phys **85**, (2013)

Electron trajectories shapes the radiation

G Genoud, PhD Thesis, 2011

Electron trajectories shapes the radiation

Experiment Simulation

K Ta Phuoc *et al*, Phys Rev Lett **97**, 225002, 2006

A Döpp *et al*, Light: Science and Application 6, e17086 (2017)

X-ray source size

25 μm tungsten wires

Wire shadow on CCD

Phase-contrast tomography

3D rendering

10 μm structures can be resolved in tomogram

K. Svendsen *et al*, Optics Express **26**, 33930 (2018)

Tomography for medical purposes

Tomographic reconstruction of trabecular bone sample J M Cole *et al*, Sci Rep **5** (2015)

High-resolution μ**CT of a mouse embryo** J M Cole *et al*, PNAS **115** (2018)

Quick micro-tomography A Döpp *et al*, Optica **5** (2018)

Outline

Controlled injection and acceleration

High energy electrons for radiotherapy

X-rays for (time-resolved) tomography

Hard X-rays for radiography

Towards laser-based FELs

Spray applications

Medical Applications: Inhalation and skin treatment

Industrial Applications: Spray drying / painting / cutting / *etc*

Spray applications

Internal Combustion Engines Applications: Diesel and GDI sprays

Gas Turbines Applications: Aero Engines

Multiple scattering limits visibility

Optically dilute spray **Intermediate spray** Optically dense spray

Visibility **No visibility** No visibility

Spray imaging combining laser-driven X-rays and laser-induced fluorescence

X-ray absorption

Transient spray tomography

Combining X-rays and 2-photon Fluorescence

Seeing into sprays

Understanding breakup and atomization of sprays is essential for improving e.g. engine efficiencies.

- **Challenges** Fast dynamics (ns to μs) Highly scattering media Multiple jets in the same spray
- **Approach Mass flow:** X-ray imaging **Atomization**: 2-photon LIF

\equiv LaserFocusWorld

SOFTWARE & ACCESSORIES > SOFTWARE

Laser-plasma accelerator: A new tool to quantitatively image atomizing sprays

By fusing x-ray and fluorescence images of droplet structures from atomizing ${\rm sprays},$ the physics of the liquid/gas phase transition—important to combustion research-are better understood. April 14, 2020

S cientist

A Clear View of Cloudy Sprays

BY CHARLES Q. C Lasers and x-rays combined can capture quick-changing droplets as they break apart and evaporate.

- E. Löfquist *et al,* in preparation
- D. Guenot *et al*, Phys Rev Applied **17**, 064056 (2022)
- H. Ulrich *et al*, Phys of Fluids **34**, 083305 (2022)
- D. Guenot *et al*, Optica **7**, 131-134 (2020)

Outline

Controlled injection and acceleration

High energy electrons for radiotherapy

X-rays for (time-resolved) tomography

Hard X-rays for radiography

Towards laser-based FELs

Hard X-rays from Compton scattering

Compton scattering using only one laser beam

 $\mathbf b$ 20

 $z = 0$ mm X-ray signal (a.u.) 10 θ_{y} (mrad) $\mathbf 0$ -10 -20 -20 -10 \dot{o} 10 20 θ_x (mrad) \overline{a} Al (2.1 mm
Cu (0.5 mm
Cu (1 mm
Cu (2 mm .
u (4 mm) \overline{a} Cu (8 mm)
Cu (12 mm Photons/0.1%BW × 10⁴
N
W
W $\overline{1}$ \circ 50 100 150 200 250 300 350 Energy (keV)

K Ta Phuoc *et al*, Nature Photonics **6**, 308–311 (2012)

Gamma ray source for radiography

- Laser: 30 TW, 30 fs laser
- Electrons: 100 MeV, 70 pC
- 1 mm tantalum Bremsstrahlung converter
- Image plate detector
- Copper foil enhances gamma detection (converts gamma-rays to low-E electrons)

A Ben-Ismail *et al*, Appl. Phys. Lett. **98**, 264101 (2011)

Radiograph of a dense hollow sphere (20 mm diameter tungsten)

Outline

Controlled injection and acceleration

High energy electrons for radiotherapy

X-rays for (time-resolved) tomography

Hard X-rays for radiography

Towards laser-based FELs

Laser-driven soft-X-ray undulator source

M Fuchs *et al,* Nature Physics **5**, 826–829 (2009)

Coherent radiation from an undulator

Electrons in a bunch passing through an undulator can interact with the radiation produced by other electrons within the bunch so that "microbunches" start to develop, which gives an exponential increase in the radiation intensity with distance along the undulator.

Achieving gain require exceptional electron beams with **simultaneously**

- \checkmark High peak current (kA)
- \checkmark Low normalized emittance (<1 mm mrad)
- \checkmark Low energy spread (<1%)

Slide: A Wolski, CAS 2012

W Wang *et al*, Nature **595**, 516–520 (2021)

Beam-driven FEL

R Pompili *et al*, Nature **605**, 659–662 (2022)

M Labat *et al*, Nature Photonics **17**, 150–156 (2023)

Conclusion

High-power lasers essential for plasma acceleration are available commercially from multiple providers.

Plasma accelerators come in **compact setups**, making them ideal for space-constrained **industrial or hospital settings**.

Now is **the ideal moment for YOU** to pinpoint key areas with significant **impact on science and society**.