Science for and with laser based x-ray sources

Jens Uhlig et al. Chemical Physics Lund University

Complementary Spectroscopic Approaches: Numbers

About me

 Δt

The advantage of synchrotrons

J. Phys. Chem. A 2018, 122, 31, 6396–6406 DOI:10.1021/acs.jpca.8b00916

Hot dynamics

Angewandte Chemistry https://doi.org/10.1002/anie.201908065

Four very different type of experiments

Always start with WHY?

Time-resolved experiments XFEL: 10 persons 1 week USA = 40 kEuro Facility 2-3 MEuro / beamtime

Proposal (>one week) + Preparation Time-resolved experiments for multiple days: 1g sample at 20mg/week and person? Damage? Success? No guarantee of proposal success (Grants?)

Lab – based (steady state) - sources

Limit? Melting of copper! 20kV * 40mA on 100µm x 100µm close to 50% of melting power Lamp 200V, 4A = 800W lamp

Brilliance photons /s / mm^2 /mrad²

Micro-focus sealed tube 2×10^9 (70x70 micron) Micro-focus rotating anode 12×10^9 (80x80 micron) Liquid metal jet

26 x 10⁹ (20x20 micron)

undulator 1×10^{14}

 1×10^{13}

How to use: efficient detection, experiment design

T. Skarzynski, "Collecting data in the home laboratory: evolution of X-ray sources, detectors and working practices," Acta Crystallographica Section D Biological Crystallography, vol. 69, no. 7, Art. no. 7, Jun. 2013, doi: 10.1107/s0907444913013619

15 cm

X-ray tube bremsstrahlung

accelerating electrons

clystron

Video Circulating electrons

ISA, Centre for Storage Ring Facilities, Aarhus https://www.isa.au.dk/animations/animations.asp Accessed May 11 2020

Video Insertion devices tangential beam

ISA, Centre for Storage Ring Facilities, Aarhus https://www.isa.au.dk/animations/animations.asp Accessed May 11 2020

Old Bending magnet

Bending magnet

Ukraine lecture 2024

Bunch modes

Look into ring

Synchrotrons

MaxIV, Lund 3 & 1.5 GeV ring

APS Chicago 6 GeV ring 100ps 10^13ph/s

8 GeV ring SACLA 1ps 10^12ph/s Osaka/Japan ESRF Grenoble /France 6 GeV ring 100ps 10^14ph/s

Ukraine lecture 2024

Lecture 2 – Sources and numbers

Video Insertion devices tangential beam

ISA, Centre for Storage Ring Facilities, Aarhus https://www.isa.au.dk/animations/animations.asp Accessed May 11 2020

Photo Soleil, beamlines

Look onto Undulator

Undulator spectrum

https://www.esrf.eu/home/UsersAndScience /Experiments/EMD/ID26/Characteristics/Sca nningModes.html

·--/

Look onto undulator from outside

Sources 1st-3rd generation

Synchrotron sources

We create structure in the electron bunches

Ukraine lecture 2024

Short pulse sources

Swizzfel 50fs 10^12ph/s Villigen, close to Zurich/Switzerland

European XFEL 50fs 10^17ph/s Hamburg

3km linac 100fs 10^12ph/s LCLS Stanford /California

FEMTOMAX at MAXIV 100fs 10^7ph/s scanable, Lund

Sources

Accellerator based sources

Ukraine lecture 2024

Betatron 1

A. Macchi, M. Borghesi and M. Passoni, Ion acceleration by superintense laser-plasma interaction, *Reviews of Modern Physics*, 2013, **85**, **751–793**.

A. Döpp, B. Mahieu, A. Lifschitz, C. Thaury, A. Doche, E. Guillaume, G. Grittani, O. Lundh, M. Hansson, J. Gautier, M. Kozlova, J. P. Goddet, P. Rousseau, A. Tafzi, V. Malka, A. Rousse, S. Corde and K. T. Phuoc, Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator, *Light: Science & Applications, 2017*, *6*, *e17086*.

Betatron 2

mages: Sci Rep **12**, 10855 (2022). https://doi.org/10.1038/s41598-022-14748-z Lund: Sci Rep . 2020 Oct 8;10(1):16807. doi: 10.1038/s41598-020-73805-7.

1KHz (plan) = 2e13 photons/h/str/eV

HHG 1

A. Harth, C. Guo, Y.-C. Cheng, A. Losquin, M. Miranda, S. Mikaelsson, C. M. Heyl, O. Prochnow, J. Ahrens, U. Morgner, A. L'Huillier and C. L. Arnold, Compact 200 kHz HHG source driven by a few-cycle OPCPA, *Journal of Optics, 2018, 20, 14007.*

Time delay differences $[\tau_A(2s) - \tau_A(2p)]$ in neon

M. Isinger, R. J. Squibb, D. Busto, S. Zhong, A. Harth, D. Kroon, S. Nandi, C. L. Arnold, M. Miranda, J. M. Dahlström, E. Lindroth, R. Feifel, M. Gisselbrecht and A. L'Huillier, Photoionization in the time and frequency domain, *Science, 2017, 358, 893–896.*

HHG 2

Science, Kapteyn Volume: 336, Issue: 6086, Pages: 1287-1291, DOI: (10.1126/science.1218497)

HHG 3

3e5 ph/str/h @4keV, But 1e12/str/h @400eV (heard)

Optica, Vol. 9, No. 9 / September 2022 / 1003, https://doi.org/10.1364/OPTICA.456481

Source comparison

Ukraine lecture 2024

x-rays from water in general

Lecture 2 – Sources and numbers

Ukraine lecture 2024

Laboratory pump – probe setup

time-resolved XAFS and XES at low excitation yield

The Journal of Physical Chemistry Letters, vol. 8, no. 5, pp. 1099–1104, Feb. 2017, doi: 10.1021/acs.jpclett.7b00078.

Wrong Experiment!!!

5e9ph/str/eV/h @4mJ

XES:

5e12ph/str/h (1000eV absorbed) No detector saturation

time-resolved XAFS and XES at low excitation yield

1 person setup and run, 4h accumulation, 3d printed chamber NO optics 8ml at 6m/s, 10mMol, 15%

My confession, I also went for bigger sources

Spectrum at Eli

J. Synchrotron Radiat., vol. 28, no. 6, pp. 1778–1785, Nov. 2021, doi: 10.1107/s1600577521008729.

Flux and fluctuations last year

With single crystal detector:

So 2h for steady state Kalpha after reasonable improvement with 100mJ in 2min With the 16 crystal Zoltan will show you the same time for Kbeta Differential spectrum x 10 - x100 (20-200min)

Plasma

Using Plasma sources

1.5m

Geometry is the key, or: how much of the flux can you catch? Here 6 cm!

Here 1.8 cm = 11x the used flux

Elaesser, CLEO, IEEE, 2022 JM2E.3

Price 400kEuro, New bands from BASF, changing bands regularly

As seen with x-ray eyes. Simultaneous XES/XDS and slow XAS

Flux for different pump-probe techniques

Flux for different pump-probe techniques

Numbers from Experiments:

6390

6395

6410

7045

7050

7055

Energy (eV)

7060

7065

6405

6400

Physical Review X, vol. 6, no. 3, Sep. 2016, doi: 10.1103/physrevx.6.031047.

Energy (eV)

Source comparison

XAS: 200eV XES: 1500eV OPCPA: 5e14ph/h/str in Kalpha = 1/4LCLS 800nm: 1e12ph/eV/h/str broadband copper

2e9/pheV/h/str/broadband water

APS 7keV (approx.) 1e14 ph/s @ 6MHz mono chrome 2e13 ph/s @ 1.25 MHz 7e16 ph /h monochrome

LCLS 7keV (approx.) 1e10 ph/shot @ 60Hz 2e15 ph /h polychrome 2e13 ph /h monochrome

Crystal geometries

Gerry Seidler Global XAFS club https://www.youtube.com/watch?v=3lJ9uE7Xvcg&t=101s

high efficient crystal detectors: efficiency <1e-7

How to use all these numbers:

XAS cylindrical bend von-Hamos

Source to sample 2cm, 300 micron spot str= 3e-5 str area

XES

0.2 mm x 10 cm 2e9ph/str/eV/h @8mJ on 25 cm \approx 3 \times 10⁻⁵ XAS: 200eV x 2e9ph/str/eV/h x 3e-5 str =6e4/h we need 3e6 = 50hXES: 1500eV x 2e9ph/str/eV/h = 3e12/h/str useful from the source = 9e7/h hit sample and are absorbed x 3e-5 str x 0.3 emission prob = 2.7e7/h/str emitted into 4pi x 3e-5 str = 810/h detected Kalpha (1eV) need 4500 = 5.5h= 40/h detected Kbeta (all spectrum) need 700 = 17 h What can we improve? More crystals(x6) Direct detection = 5000/s in theory, measured, 6h for small array, Factor 10 possible

Plan experiment

Global analysis

The path towards a highly efficient and scalable photo-catalysis using silicon nanowires

Summary and Acknowledgments

Care for your photons

Lund Universitv Axl Eriksson

Anurag Kawde Moritz Tritschler Pavel Chábera **Tobias Harlang** Lisa Fredin Torbjörn Pascher Amal El Nahas Wilfred.K Fullagar Sophie Canton Meiyuan Guo Hideyuki Tatsuo **Reine Wallenberg** Linnea Lindh Yizhu Liu Om Prakash Jianxin Zhang Olga Gordivska Hao Fan Lisa de Groot Kasper Kjær Valtýr Freyr Hlynsson

erc

Joachim Schnadt Petter Persson Arkady Yartsev Kenneth Wärnmark Villv Sundström **Uppsala University** Reiner Lomoth **Ping Huang** Stenbjörn Styring DTU Asmus O. Dohn Klaus Møller Tim B. van Driel Morten Christensen Kristoffer Haldrup Martin M. Nielsen Hungarian A.o.S. Mátyás Pápai Emese Rozsályi Amélie Bordage Zoltán Németh György Vankó

Pulse, SLAC Robert Hartsock Marco Reinhard Kristjan Kunnus Kelly Gaffney **Boulder** Joe.W. Fowler William B. Doriese Dan Swetz Luis Miaja-Avila IJ. Young Galen O'Neil Kevin Silverman Carl Reintsema **Douglas Bennett** Dan Swetz Dan Schmidt Gene Hilton Dan Fischer Ralph Jimenez K. Irwin Joel N. Ullom

PSI

för Vetenskaplig Forskning

Crafoordska stiftelsen Carl Tryggers Stiftelse

Grigory Smolentsev Twente University Annemarie Huijser Qing Pan David van Duinen U. o. Vienna Leon Freitag Leticia González U. o. Groningen Wesley R. Browne U. Ulm Sven Rau **Tanja Kowacs** Dublin U. Johannes G. Vos Hamburg Christian Bressler Katarina ELI Anna Zymakova Jakob Andreasson Martin Precek

Thanks for your attention