
ELI eLogBook

PaNOSC WP3 Catalogue Integration Best Practices Meeting 05/19/2021



Date:

Outline

• Background

• Architecture

• Data model

• Extensions

• UI - screenshots

• REST-API



Date:

Background

eLogBook main features:
• User management, user roles
• Structured data, timestamped series of entries, comments
• Support for text, images, tables, ...
• Export to document (pdf)
• API

• –> automation from primary laser source
• –> standardization towards "PaN logbook"

Application framework:
• Django: web application framework written in Python 3

• Authentication and authorization system
• Template system
• Database connectors with common Python based query interface

• Mezzanine: CMS (content management system) based on Django
• Blog engine with forms and templates
• WYSIWYG editing
• Tagging system



Date:

Architecture

https proxy

LogBook
server #1

LogBook
server #2

LogBook
server #N

Database

• Docker: deployment system

• Ngnix https proxy
• Gunicorn (master/worker processes):

• WSGI HTTP Server inside the docker container
• MySQL database

• Currently 7 servers, 44 logbooks in total



Date:

Data model

User

LogBook

LogBook Entry

Comment Category / Tag

1..*

1

1

0..*

1

1 0..*

0..*

0..* 0..*

0..*

0..*

Exporter
Template0..* 0..*

member

owner

owner

related

0..*

0..*



Date:

Definitions - LogBook

LogBook
It has a collection of users and a LogBook name and color. Admin users have special
privileges.

Attributes:
• Title: it will be the name of LogBook.
• Members: list of the users who will be able to create Entries for this LogBook and 

view Entries which are assigned to the LogBook.
• Admins: list of the users who will have permission to change members list and other 

LogBook attributes.
• Color: LogBook color.



Date:

Definitions - LogBook entry

LogBook entry
Main content: text, images, tables

Attributes:
• LogBook: it refers to a specific LogBook. A LogBook entry will only be shown for 

LogBook members.
• Owner: creator and the one who can edit the entry later.
• Categories: this field contains the tags of LogBook entry.
• Title: it will be the name of LogBook entry.
• Status: this field gives the preparation state of LogBook entry. With Draft 

chosen, the post will only be shown for admin users.
• Content: this field contains the base information of LogBook entry.
• Allow comments: enabled flag of the comment block.
• Related Entries: list of the related Entries.



Date:

Extensions to Mezzanine

Exporters
Exporter component works based on templates. An export template describes
how to insert elements (title, content, owner ...) from the chosen Entries into
an exported version (pdf format) of these.

LDAP integration
It provides group based user management and can collect information (name,
e-mail address, ...) from LDAP database.

User manager
This component provides opportunity to set LogBook membership and allow users to
view or edit entities inside the system.
• Admin: can add or modify LogBooks and can configure LDAP dictionaries and

user attributes.
• LogBook Admin: can manage user list of LogBook and modify attributes of Logbook.
• User: can create LogBook entries or comments if he or she is

one of users of LogBook.



Date:

UI - Login



Date:

UI - Overview page



Date:

UI – LogBook entries



Date:

UI - Entry



Date:

UI - Entry



Date:

REST-API

Available items for the authenticated users:
• Logbook: user can create LogBook or get a list of created instances.
• Entries: user can cerate an entry inside a user related LogBook or get a list of all

entries from LogBooks where the current user has a membership.
• Users: user can list of public information about registered users.
• Categories: user can create a category or get a list of all categories.
• Comments: user can create a comment or get list of all comments from available

entries, it depends on the LogBook membership.

Swagger based definition

https://elog.eli-alps.hu/dev/api-swagger/

https://elog.eli-alps.hu/dev/api-swagger/


Date:

Standard PaNOSC logbook API

• Core logbook functionality seems to be the same everywhere

• Logbook is an important source of metadata

• A well-defined API could provide

• Adjust existing logbooks to conforming implementations

• (Community-)shared development cost on conforming

implementations

• Cheap integration with (m)any cataloguing solutions

• Expected outcome: standard logbook implementation



Thank you


