

User opportunities at ELI-ALPS

Péter Dombi head of Ultrafast Science and Applications Division

INVESTING IN YOUR FUTURE

ELI facilities as complementary pillars

Mission of ELI-ALPS in Hungary:

meli

- to generate femtosecond and attosecond pulses,
- for temporal investigations of electron dynamics in atoms, molecules, plasmas and solids

Characteristic sizes – characteristic times

ELI-ALPS history: construction

eli

Status 2022

To be achieved by Q4 2023

ELI-ALPS user opportunities

🗰 eli

Laser parameters & status

	Parameters	Status	Operation
HR1	100 kHz, 30 fs, 1.5 mJ 100 kHz, <7 fs, 1 mJ	CEP issue unresolved	since Dec 2017 since Aug 2021
HR2	100 kHz, <6 fs, 5 mJ, CEP<200 mrad	Currently at 9 fs	by Q2 2023
MIR, 3 μm	100 kHz, <40 fs, 0.15 mJ, CEP<100 mrad	Operational	since October 2017
MIR-HE, 3 μm	1 kHz, <50 fs, 20 mJ, CEP stable	Contracted	by Q2 2023
SYLOS 2	1 kHz, <7.5 fs, >30 mJ, CEP<250 mrad	Operational	since May 2019
SYLOS 3	1 kHz, <8 fs, >120 mJ, CEP<250 mrad	In development	by Q4 2023
SYLOS alignment	10 Hz, <12 fs, >40 mJ, ~850 nm	Operational	since Jan 2019
HF PW	10 Hz, <17 fs, 34 J (2.5 Hz, 25 fs, 7 J)	Installation	by 2025 (2023)
THz Pump	1 kHz, 100 fs, 4 mJ 50 Hz, <0.5 ps, 0.5 J, synchronized	Installed	since Jun 2021

•eli

ELI-ALPS Secondary Sources

Secondary Source	Specs Achieved	Status	Date for user access
GHHG HR1 & 2 GAS (LTA4)	>270 pJ @ generation, >50 pJ on target; 166 as; @100 kHz; 30-70 eV	train of atto pulses, CEP of driver not resolved	Available to users with HR1 Q2 2023 (HR2)
GHHG HR1 & 2 CONDENSED (LTA3)	current status 170 pJ @ generation XUV monochromator installed	train of atto pulses XUV mono resolution 100-400 meV	Available to users with HR1 Q2 2023 (HR2)
GHHG SYLOS COMPACT (LTA2)	400 nJ @ generation in Ar, ~1 μ J in Xe	2-photon XUV process observed pol gating in development setting up Flagship proj	Available to users Q4 2022
GHHG SYLOS LONG (LTA1)	400 nJ @ generation in Ar, ~1 μJ in Xe	in commissioning (XUV flux studies)	by Q1 2023
SHHG SYLOS (MTA)		Under construction on site	by Q3 2023
SHHG PW (HTA)		Under construction on site	by Q3 2023
MIR HE GEN ATTO		Under development	by Q3 2023
NLTSF / THz SPECTROSCOPY (THz)	energy: 10 µJ at source, 5 µJ at sample useful spectral content: 0.15-2 THz peak THz field at sample: ≥450 kV/cm	recommissioned in new lab, pump-probe schemes THz – THz – white light – green	Available to users
THz HIGH ENERGY (THz)	energy ~ 1 mJ, @50 Hz useful spectral content 0,15 – 1,5 THz	pump-probe schemes in development	Available to users
ELECTRON- SYLOS (MTA)		Under construction on site	by Q3 2023
ELECTRON PW (HTA)		Under development	by Q4 2023

eli

100 kHz laser systems

- fiber laser technology
- double MPC concept for postcompression to <7fs

S. Haedrich et al., Optics Letters 47, 1537 (2022)

	Parameters	Status	User readiness
HR1	100 kHz, 40 fs, 1.5 mJ 100 kHz, <7 fs, 1 mJ, CEP	Operational	since Dec 2017 Aug 2021
HR2	100 kHz, <6 fs, 5 mJ, CEP	In development	by Q3 2023

HR (100 kHz) beamlines and instruments

HR Condensed + NanoEsca

•eli

HR Gas + ReMi/VMI

High harmonics @ 100 kHz Performance

Highest flux, temporally characterized attosecond pump-probe beamline running at 100 kHz

~20% transmission from generation to target

🖩 eli

• >100 pJ APT on target (~500 pJ at generation), 30-70 eV, with XUV monochromator

The NanoESCA end-station

Light sources: Internal (CW) sources:

- Hg arc lamp (5.2 eV 238 nm)
- He VUV lamp (He I mode: 21.22 eV 58 nm; He II mode: 40.81 eV – 30 nm)

Short pulsed sources:

Venteon CEP5 oscillator
 (6 fs, 830 nm)
 GHHG coming up, 20-90 eV, time-resolved

Modes:

PEEM: Photoemission electron microscope (35 nm res.)

ToF-PEEM: Time of flight + DLD analyzer (delay line detector)

Spectroscopy of selected area: Channeltron detector after first hemisphere (20 meV res.)

k-space imaging of band structure: ESCA mode (0.03 Å-1 res.)

Imaging spin filter: spin selective mirror: gold coated Ir(100) crystal

NanoESCA prep chamber

- **<u>Cleaning</u>**: (sample cleaning)
- Ar⁺ ion sputtering
- Annealing (heat- and coolable manipulator)

Preparation:

- e-beam evaporator for metal deposition
- gas dozer based on a capillary array (adsorption of vapourable liquids)
- magnetizer
 - Helmholtz coil
 - B field: up to 43 mT

<u>Characterization</u> (laterally averaged):

- **LEED-AES** (Low Energy Electron Diffraction Auger Electron Spectroscopy): determination of surface structure and composition
- **XPS** (X-ray photoelectron spectroscopy):
 - quantitative chemical analysis of the surface
 - monochromatic Al $K_{\!\alpha}$ X-ray source @ max. 300 W
 - 128 detection channels
- **RGA** (Residual Gas Analyzer) by quadrupole mass spectrometer

Nano ESCA spin-filter

Fig. 6 Demonstration of the spin contrast on a polycrystalline iron sample in real space mode (FOV 130 μ m).

The surface band structure of 2D hexagonal boron nitride on Au/Rh(111) surface alloy

Nonlinear THz Spectroscopy Facility (NLTSF)

NLTSF Parameters					
Pump THz pulse parameters		Electro-optic sampling		Sample parameters	
Pulse energy	10 µJ at source 5 µJ at sample position	Spectral resolution	50 GHz	Minimum sample clear aperture	2 mm
Spectral maximum	0.5 THz	Useful spectral coverage	0.1-2.5 THz	Temperature range	6 K – 800 K
Useful spectral coverage	0.1-2.5 THz	S/N ratio	>300:1	Measurement modes	 THz transmission THz pump - THz probe Optical pump - THz probe Optical pump - THz control - white light probe (in development)
Energy stability	< 2% RMS	(depends on measurement			
Peak THz field	450 kV/cm	time)			

eli

NLTSF - results

Ultrafast carrier dynamics in n – doped germanium

ei

Fig. 5. (a), (b) Spectrally averaged free carrier absorption with respect to pump - probe delay Fig. 6. Schematic band structure of germanium [3]

CONTACT: jozsef.fulop@eli-alps.hu

Ultrasensitive probing of plasmonic hot electron occupancies

eli

Ultrasensitive probing of plasmonic hot electron occupancies

J. Budai, Z. Pápa, P. Petrik & P. Dombi: Nature Comm. 13, 6695 (2022)

🗰 eli

In-house user services

Optical workshop / custom coatings (incl. advanced metrology)

meli

Nanofabrication EBL+FIB

(Radio)biology lab

ELI-ALPS facts and figures

5 of 9 lasers user operational

ei

first attosecond pulses generated

7 user papers published

3 of 9 secondary sources user op

25 completed collaborative user campaigns 3000+ user hours ELI-ERIC User Calls

meli

www.eli-alps.hu www.eli-laser.eu

user ready by Q2 2023 by Q4 2023 eli

Experimental stations implementation status

Experimental Stations	Status	Date for user access
REACTION MICROSCOPE / COLTRIMS	installed on HR GHHG	available to users
VMI SPECTROMETER ENDSTATION	tested on HR GHHG, adaptation to MIR ongoing	available to users
CONDENSED MATTER STATION (NANOESCA)	internal VUV source, CEP stable oscillator, HR GHHG source	available to users
MAGNETIC BOTTLE e SPECTROMETER (IMPULSE) – collab FORTH	under development	Q1 2024
NANOSCIENCE & NANOFABRICATION	electron beam lito + focused ion beam	available to users
NANOSCIENCE: time resolved ELLIPSOMETRY	under internal development	Q3 2023
NANOSCIENCE: Scanning Nearfield Microscope	under procurement	Q3 2023
CHEMICAL REACTION CONTROL STATIONS (GPRC; TAS)	transient absorption setup for condensed samples on HR, gas phase reaction control on SYLOS	available to users
RADIOBIOLOGY / BIOMEDICAL LAB	standard biology toolset zebrafish embryo test model for radiobio studies Radiobiology toolset (irradiator, dosimetry setup)	available to users
eSYLOS IRRADIATION FACILITY (for biol, chem, phys samples, dosimetry)	under internal development	Q3 2023
eSYLOS X-RAY GENERATOR	under internal development	Q3 2023
HIGH FIELD PHYSICS STATION (PW)	under internal development	Q3 2023
THz PUMP – XUV PROBE	under internal development	Q2 2023