

ELI Beamlines cooperation with Poland and user offer

ELI ERIC Polish Information Day

Daniele Margarone Director of Research and Operations ELI Beamline Facility, The Extreme Light Infrastructure ERIC

Introduction: ELI Beamlines Facility

Scientific Cooperation with Poland

ELI BL Operations and User Science Opportunities

ELI Beamlines (mission profile)

Dolní Břežany, Czech Republic

- ✓ Provide unique tools to support scientific excellence worldwide
- ✓ Explore interaction of light with matter (plasma) at ultrahigh intensities (up to 10²³ W/cm²)

- ✓ Develop and operate four cutting edge, high-power femtosecond laser systems (L1, L2, L3, L4) with high energy, high repetition-rate capability (100mJ @1kHz, 2J @50Hz, 30J @10Hz, 1.5kJ @0.01Hz)
- ✓ Offer secondary sources (X-rays and accelerated particles) with unique capabilities to users
- ✓ Enable pioneering research not only in plasma physics, laboratory astrophysics, and material science, but also in biology, medicine, chemistry and other disciplines with strong multidisciplinary application potential

ELI Beamlines Experimental Areas

"as built" lasers and experimental halls

L1: 4TW, 15fs, 1kHz L2: 100TW, 20fs, 50Hz L3: 1PW, 30fs, 10Hz L4: 10PW, 150fs, 0.01 Hz L4n: 1.5kJ, 3ns, 0.01 Hz

E1: AMO, Material and Life sciences with kHz sources
E2: relativistic X-ray sources
E3: Plasma Physics platform
E4: Ion Acceleration and Applications
E5: Electron Acceleration and Undulator Radiation

ELI Beamlines "Instruments"

secondary sources, end stations, experimental stations

Instruments currently in operation

Introduction: ELI Beamlines Facility

Scientific Cooperation with Poland

ELI BL Operations and User Science Opportunities

PL Users: PALS Laser Facility in CZ IPPLM-IoP(PALS) cooperation in laser-plasma physics since 2000

Europe

Joint experiments at other facilities

IPPLM-ELI cooperation since 2015

D. Margarone ELI BL

M. Rosinski IPPLM

First shots at relativistic intensities

L3 HAPLS commissioning @ELI BL (ELI-IPPLM)

B deflection @ pix

TERESA-L3 ELI Beamlines Febr 2019 shot on target! Focal spo 3,8µm **FWHM C**6+ 50 Distance (pixels) ction 1000 electrons defl 800 H^+ 600 400 200 First ions and first electrons accelerated by the L3-HAPLS laser at ELI Ω Beamlines 500 1000 1500 2000 2500 300 0

Plasma-based secondary sources have been generated at ELI Beamlines by the L3-HAPLS laser system for the first time. Two short experimental campaigns on ion and electron acceleration, respectively, have been carried out at the TERESA (TEstbed for high-REpetition-rate Sources of laser-Accelerated particles) target area.

eli

Summary of IPPLM-IoP-ELI cooperation Iaser plasma physics and applications (2000+)

- Joint publications (since 2000): >70 based on user access @PALS (PI: J. Badziak, J. Wołowski, T. Pisarczyk, M. Rosinski, et al.)
- Number of IPPLM user experiments (since 2000): >30 @PALS (Laserlab access) and 1 @ELI-BL (scientific collaboration, MoU)
- Number of ELI BL R&D experiments @IPPLM High Power Laser Laboratory (since 2018): 2 exp. on electron acceleration (T. Levato et al.), 1 exp. on ion acceleration (A. Velyhan, D. Margarone), and 1 exp. on applications, i.e. PIXE (V. Kantarelou, S. Stancek, F. Schillaci)
- Research topics of mutual interest: laser-plasma particle acceleration, plasma diagnostics, applications, EMP, magnetic fields, ICF, and pB fusion)

Training of Polish Students @ELI BL

summer internship programme (not exhaustive list)

- ✓ 2019 (2 months): Michal Krakowsky, "Development of control systems for UHV power supplies", Wroclaw University of Science and Technology
- ✓ 2020 (2 months): Michal Krakowsky, "Internship on the development of hybrid analoguedigital control systems for UHV power supplies and test of spectrometer prototype", Wroclaw University of Science and Technology
- ✓ 2019 (2 months): Alicja Kwasny, "Development of cryogenic target system", Wroclaw University of Science and Technology
- ✓ 2019 (2 months): Alicja Kwasny, "Application of machine learning for optimization of laser-matter interaction", Wroclaw University of Science and Technology

✓ ~1-2 PhD students per year (experiments at PALS and ELI) since 2000

Introduction: ELI Beamlines Facility

Scientific Cooperation with Poland

ELI BL Operations and User Science Opportunities

L1 ALEGRA laser status

R. Antipenkov, P. Bakule, B. Rus (Dep.91)

- Picosecond OPCPA architecture: inherently high temporal pulse contrast
- System designed and built at ELI-Beamlines (using commercial thin-disk pump lasers)

Achieved 55 mJ / <15 fs pulses @ 1 kHz Routine operation for users - ~30 mJ on target in E1

- Availability in experimental halls: E1 hall
- available on average 6.8 hours per day for planned user experiments in E1 hall

E1 Experimental hall X-ray beamlines & end-stations

J. Andreasson et al. (Dep88), O. Hort, J. Nejdl (Dep.86)

Function is fundamentally related to dynamics! Beamlines and end stations for photon science experiments in the mid IR to Hard X-ray range at kHz

These are used for **time resolved experiments** using **pump-probe** techniques to study **femtosecond** to millisecond dynamics

L3 HAPLS laser status

High repetition rate Advanced Petawatt Laser System

J. Cupal, B. Rus (Dep.91)

- 1 PW 10 Hz repetition rate beamline
- Nd:glass helium-cooled DPSLL pump laser
- Ti:sapphire short-pulse chain, helium-cooled power amplifier
- World's highest peak power laser diode arrays
- High level of automation

Design performance:	1 PW / 10 Hz
	30 J / <30 fs
Current performance:	0.5 PW / 0.5 Hz, 3.3 Hz 13.3 J / 27.3 fs

Ramping to PW / 10 Hz in progress:

- 1 PW / 0.5 Hz	2023
- 1 PW / 3⅓ Hz	2024
- 1 PW / 10 Hz	2025

Page: 17

ELIMAIA beamline (E4)

Ion Acceleration and multidisciplinary applications (ELIMED end-station)

10

300

eli

F. Schillaci, L. Giuffrida (Dep.87)

Ion Accelerator	Available	Design
Laser intensity	2.10 ²¹ W/cm ²	$5 \cdot 10^{21} \text{W/cm}^2$
Laser energy	>10J	30J
Laser pulse width	<30 fs	<30 fs
Repetition rate	up to 0.5 Hz	10 Hz
Proton energy cutoff	40 MeV	100 MeV
Proton flux (>3 MeV)	~ 1·10 ¹⁰ /sr	~ 1·10 ¹¹ /sr

ELIMED Station	Design parameters
	@ user sample
Proton energy	5-60 MeV
lons/shot	$1.10^{8} - 1.10^{10}$ /sr
Bunch duration	1-10 ns (>10 ⁹ Gy/s)
lon beam aperture	~ 1deg (FWHM)
lon beam spot size	0.1-10 mm (FWHM)
Repetition rate	Possible active
	modulation (1Hz)

ELI-ELBA beamline (E5) status and plan

G. Grittani, S.V. Bulanov (Dep.86)

Date:

Page: 19

- Electron acceleration line installed
- Counter Propagation line procured, installation in March 2023
- Set-up accommodates different beam splitter configuration (split ratio can be varied based on user requirements)
- User contribution to experimental diagnostics, data analysis, and modeling

L4 ATON laser

P. Trojek, B. Rus et al. (Dep.91)

kJ CPA system to provide 10 PW peak power

Date:

PA2 Beam size

- 323x323 mm kJ LP
- 620x620 mm 10 PW

Parameter	Achieved value
CPA pulse energy	1512 J
	significant headroom, higher energy possible
Randwidth FWHM	~14 nm Gaussian fit
	non-optimized compressibility 154 fs
Long pulso (LD) operav	1180 J
Long puise (LP) energy	significant headroom, higher energy possible
Pulse width	<0.5-10 ns
/ temporal shaping	125 ps with 60 ps rise time
Current chot rate	1 per 2 minutes (high beam wavefront quality)
Current shot rate	1 per minute (moderate quality)

P3 experimental platform (E3) L4-ns + L3

S. Weber et al. (Dep.89)

- → L4n as driver (to generate ICF relevant plasma, e.g. shocks or WDM) & L3 as diagnostic tool
- → L3-SFL: energetic protons (radiography), K-alpha, gammas (few MeVs); f/3 OAP, focal length 0.75 m
- → L3-LFL: betatron broadband radiation, potentially electrons (?!); f/20 spherical mirror, focal length ~5 m

 \rightarrow L4n and L3 can be synchronized with a jitter of ~20 ps at present

J.T. Green, B. Rus (Dep.91)

L2 DUHA (R&D – ADONIS)

>100 TW, 50 Hz system with mid-IR aux beam

- 2J / 20fs / 50 Hz (→ 4J / 100Hz)
- Nanosecond OPCPA
- Pump laser: 15 J @ 1030 nm DPSSL Yb:YAG
- Thin disk ps laser driving supercontinuum in bulk YAG: seed for high-energy OPCPA @ 820 nm & generation of 2.2 μm in DFG

LUIS in E5 (R&D – ADONIS & EUPRAXIA) high quality LWFA electron beams for FEL with L2

A. Molodozhentsev, S.V. Bulanov (Dep.86)

LUIS technologies in the E5-experimental hall

from incoherent to coherent (FEL) photon radiation

Betatron/Compton X-ray sources in E2/E3

U. Chaulagain, J. Nejdl, S.V. Bulanov (Dep.86)

Driven by L3 (or L2) @ 10Hz (or 50Hz)

	Betatron	Compton
photon energy	10- 100 keV	50 – 5000 keV
photons/shot	> 1E9	> 1E8
Source size	< 5 μm	< 5 μm
pulse duration	~30 fs	< 30 fs

eli

ELI Beamlines User Access

- ✓ 1st ELI ERIC Call for User proposals, published in June 2022, experiments ongoing (L1-E1 kHz experimental chain)
- ✓ ELI BL User Assisted Commissioning Calls, published in October 2022, experiments planned in April-June 2023 (L3 @ELIMAIA-ELIMED, L4-ns @P3)
- ✓ 2nd ELI ERIC Call for open-access proposals, <u>published in February 2023</u>, L1-E1 kHz chain and high power laser capabilities, i.e. L3 HAPLS (PW-class, 3.3 Hz) and L4 ATON (kJ-class, ns)

Issue Date	04.10.2022
Closing Date	05.11.2022
Status	closed
FLL Reamlines call: user-as	sisted commissioning of the FLIMAIA Ion Be
ELI Beamlines call: user-as: Transport section at high r	sisted commissioning of the ELIMAIA Ion Bea epetition-rate
ELI Beamlines call: user-as: Transport section at high r Issue Date	sisted commissioning of the ELIMAIA Ion Ber epetition-rate 04.10.2022
ELI Beamlines call: user-as: Transport section at high r Issue Date Closing Date	sisted commissioning of the ELIMAIA Ion Bea epetition-rate 04.10.2022 05.11.2022

Thank you for your kind attention!

- ✓ ELI excellent teams✓ User access (open)
- Young scientists
- ✓ Unique technologies

Unlimited User Science Opportunities

