

Probing Excitons in Time, Energy, Momentum, and Space by Photoelectron Momentum Microscopy

Matthijs Jansen University of Göttingen

1 September 2023

Dolní Břežany, Czech Republic

The team

AG Stefan Mathias, University of Göttingen

David Schmitt

ol | 29 Aug - 1 Sep 2023

Jan Philipp Bange

Wiebke Bennecke

Marco Merboldt

Deutsche Forschungsgemeinschaft German Research Foundation

Alexander von Humboldt Stiftung/Foundation

Photoelectron Momentum Microscopy

Photoelectron Spectroscopy

Photoelectron Spectroscopy

The Future

Momentum Microscopy

https://www.specs-group.com/

https://scientaomicron.com

Momentum Microscope

https://scientaomicron.com

Momentum Microscope: Detection

 Energy dispersion: select photon energy range

https://scientaomicron.com

Momentum Microscope: Detection

Event-based detection: one electron per pulse

K. Medjanik et al., Nat. Materials 16, 615–621 (2017)

Keunecke et al., Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline, Rev. Sci. Instr. 91, 063905 (2020)

Probing Excitons in Time, Energy, Momentum, and Space by Photoelectron Momentum Microscopy

The photoelectron momentum microscope

- Light source: ≥500 kHz HHG, 26 eV (20 70 eV)
- Pump pulses: OPA, 300 nm 16 μm, 30 50 fs

Into the third dimension

TMD Nanostructures

Engineering light-matter interaction

Interlayer excitons: electron-hole separation at atomic scales

Control of opto-electronic properties through:

- Band alignment (W/M, S/Se)
- Interlayer twist
 - Moiré potential

Interlayer exciton promises:

- Enhanced lifetime
- Confined states
- Strongly-correlated phases

ARPES at the microscale?

ARPES at the microscale?

Time-resolved μ -ARPES

- ARPES separates different excitons by energy & momentum
 - Direct access to dynamics

Energy

Time-resolved μ -ARPES

- ARPES separates different excitons by energy & momentum
- Direct access to dynamics
- And excellent comparison with theory

microscopic modelling by <u>Giuseppe Meneghini</u>, <u>Samuel Brem</u>, and <u>Ermin Malic</u>, University of Marburg

A unique momentum fingerprint

ns

Gw

1/A

G'

e

Electron-hole interaction

Threefold momentum signature:

- Umklapp scattering
 - Only for interlayer exciton
- **K** Exciton confinement?
- **X** Orbital hybridization?
 - Not expected for 10° twist
 - Generalized interaction between lattices:
 - Coulomb (e-h) interaction

Exciton delocalization

- Plane wave model of photoemission:
 - $I(k_{\parallel}) \propto |\mathbf{A} \cdot \mathbf{k}_f|^2 |\mathcal{F}(\psi)|^2 \times \delta(h\nu E_B \Phi E_{kin})$
- Bohr radii:
- > Interlayer exciton:
 - 1.6 ± 0.2 nm a
- ➢ WSe₂ A-exciton:
 - 1.1 ± 0.1 nm

Probing Excitons in Time, Energy, Momentum, and Space by Photoelectron Momentum Microscopy

b

С

Photoelectron Momentum Microscopy

Ultrafast nano-imaging of dark excitons

AFM image

WSe₂/MoS₂ (with 30° twist)

- Heterogeneity in 2D quantum materials:
 - A major research challenge
- Objective: Ultrafast nanoimaging of dark excitons
- Solution: Dark field momentum microscopy

Dark-field imaging

AFM image

WSe₂/MoS₂ (with 30° twist)

- Suitable apertures in the momentum microscope select specific states:
 - Exciton-specific imaging

Resolving nanoscale dynamics

ELISSS2023 Elistense School 13 Aug - 1 Sep 2023 Della fieta Aug. Cache Republic

Correlating signatures

Conclusions

3D orbital images

