Strong field processes in ultraintense laser fields

Martin Formánek
ELI Beamlines
August 31, 2023
Dolní Břežany, Czech Republic

Why study strong-field QED?

- Processes in plasma around pulsars and magnetars
- Other extreme astronomical environments - accretion disks of black holes, quasars, cosmic radiation
- QED plasma present in early universe during BBN
- Heavy ion collisons
- Electron beam interaction with aligned crystals
- Fundamental limits of quantum theory
- Nature of vacuum itself and quantum fluctuations

From www.mpi-hd.mpg.de

Lasers are becoming a great tool to probe such environments!

Review articles:

- Extremely high-intensity laser interactions with fundamental quantum systems, Di Piazza et al., Rev. Mod. Phys. 84, (2012) 1177
- Charge particle motion and radiation in strong electromagnetic fields, Gonoskov et al., Rev. Mod. Phys. 94, (2022) 045001
- Advances in QED with intense background fields, Fedotov et al., Phys. Rep. 1010, (2023) 1-138

Electromagnetic field scale

Schwinger critical field: does work equal to the electron rest energy $m c^{2}$ over distance of reduced Compton length $\hbar / m c$

$$
\begin{array}{ll}
E_{c r}=\frac{m^{2} c^{3}}{e \hbar}=1.323 \times 10^{18} \mathrm{~V} / \mathrm{m} & \text { Pb-Pb 3TeV collisions } E \sim 10^{24} \mathrm{~V} / \mathrm{m} \\
I_{c r}=4.6 \times 10^{29} \mathrm{~W} / \mathrm{cm}^{2} & \text { Laser world record @ KoRELs (2021) } \sim 10^{23} \mathrm{~W} / \mathrm{cm}^{2}
\end{array}
$$

$$
\text { Equivalently: } \quad B_{c r}=\frac{E_{c r}}{c}=4.41 \times 10^{9} \mathrm{~T} \quad \text { Magnetar field } \sim 10^{11} \mathrm{~T}
$$

Field invariants (observer independent):

$$
\begin{aligned}
& \mathcal{F}=\frac{1}{4 E_{c r}^{2}} \mathrm{~F}_{\mu \nu} \mathrm{F}^{v \mu}=\frac{1}{2 E_{c r}^{2}}\left(\boldsymbol{E}^{2}-c^{2} \boldsymbol{B}^{2}\right) \\
& \mathcal{G}=\frac{1}{4 E_{c r}^{2}} \mathrm{~F}_{\mu \nu} \tilde{F}^{v \mu}=\frac{\boldsymbol{c} \boldsymbol{B} \cdot \boldsymbol{E}}{E_{c r}^{2}}
\end{aligned}
$$

Both zero in a plane wave field!

Collision invariants

$$
\text { - } \mathcal{E}(\hbar \omega)
$$

$$
\chi_{e}=\frac{\sqrt{-\left(F_{\mu \nu} p^{v}\right)^{2}}}{m c E_{c r}}=\left.\frac{E_{L}}{E_{c r}}\right|_{R . F .}=5.9 \times 10^{-2} \varepsilon[\mathrm{GeV}] \sqrt{I_{L}\left[10^{20} \mathrm{~W} / \mathrm{cm}^{2}\right]}
$$

Field strength in particle's rest frame

$$
\chi_{\gamma}=\frac{\sqrt{-\left(F_{\mu \nu} k^{v}\right)^{2}}}{m c E_{c r}} \quad \text { Equivalent for massless photons }
$$

Normalized EM wave amplitude / unitless vector potential:
For plane wave field

$$
\begin{aligned}
& a_{0}=\frac{1}{m c^{2}} \frac{e \sqrt{-\left(F_{\mu \nu} p^{v}\right)^{2}}}{\kappa \cdot p}=\frac{e \sqrt{-A^{2}}}{m c}=\frac{e E_{L}}{m c \omega_{L}}=7.5 \frac{\sqrt{I_{L}\left[10^{20} \mathrm{~W} / \mathrm{cm}^{2}\right]}}{\hbar \omega_{L}[\mathrm{eV}]} \\
& u_{\perp}=\gamma \beta_{\perp} \approx a_{0}
\end{aligned}
$$

$a_{0} \approx 1$ threshold for relativistic and nonlinear effects. Number of absorbed photons $n \approx a_{0}^{3}$

$$
\text { Schwinger field: } \quad a_{c r}=\frac{e E_{c r}}{m c \omega}=\frac{m c^{2}}{\hbar \omega_{L}}=4.1 \times 10^{5} \lambda^{-1}[\mu \mathrm{~m}]
$$

Reminder: a_{0} - field strength, χ_{e} - what field the particle sees in its rest frame

Laser intensity
(W/cm ${ }^{2}$)
\downarrow
\downarrow
-10^{30}

Reminder:

 a_{0} - field strength, χ - what field the particle sees in its rest frame

August 31 ${ }^{\text {st }} 2023$

Classical radiation

Two separate theories of electromagnetism:

- One which from prescribed fields calculates the motion of charged particles.
- The other which from given sources of charges and currents calculates the fields

Jackson, Classical Electrodynamics $3^{\text {rd }}$ edition, John Wiley \& Sons, Hoboken, NJ, (1999).
Classical motion in external fields - Lorentz force:

External field $F^{\mu \nu}$

$$
\dot{u}^{\mu}=\frac{e}{m} F^{\mu v} u_{v}
$$

Radiation from moving charges - Maxwell equations - solution: Lienard-Wiechert potentials

$$
\frac{d^{2} I}{d \omega d \Omega}=\frac{e^{2} \omega^{2}}{4 \pi^{2} c}\left|\int_{-\infty}^{\infty} \boldsymbol{n} \times(\boldsymbol{n} \times \dot{\boldsymbol{r}}(t) / c) e^{i \omega(t-\boldsymbol{n} \cdot \boldsymbol{r}(t) / c)} d t\right|^{2}
$$

But particle emitting radiation must change its trajectory

$$
\text { Trajectory } \boldsymbol{r}(t) \quad \tau_{0}=\frac{2}{3} \frac{e^{2}}{4 \pi \varepsilon_{0} m c^{3}}=6.3 \times 10^{-24} \mathrm{~s}
$$

Radiation reaction!!
Lorentz-Abraham-Dirac (1937)

$$
\dot{u}^{\mu}=\frac{e}{m} F^{\mu v} u_{v}+\tau_{0}\left(\ddot{u}^{\mu}+\frac{\dot{u}^{2}}{c^{2}} u^{\mu}\right)
$$

Quantum radiation

- Described by quantum field theory - specifically by quantum electrodynamics (QED)
- Typical energy of emitted photons comparable to the energy of the particles. In classical case nothing prevents photons with energy higher than the energy of the particle.
- Discrete instantaneous recoils that occur along the particle trajectory at probabilistically determined intervals

Opposite to continuous force in classical case!!

- Stochasticity
- Straggling (electrons have a chance of not-emitting resulting into higher energy electrons than expected)
- Quenching - extreme case - no emission

Classical limit:

Cole et al., PRX 8 (2018) 011020;
Poder et al., PRX 8 (2018) 031004
Astra-Gemini

Furry picture

Coupling to laser field treated exactly to all orders Coupling to radiation field perturbative!

Quantum relativistic equation for fermions
Dirac equation: $\quad[\gamma \cdot(p-e A)-m c] \psi=0$
$\begin{aligned} & \text { Volkov solution for } \\ & \text { plane wave external } \\ & \text { field: }\end{aligned}$$\left\{\begin{array}{c}\psi_{p r}(x)=\left[1+\frac{e k \cdot \gamma A(\varphi) \cdot \gamma}{2 k \cdot p}\right] \mathrm{e}^{-\mathrm{i} S(\varphi) / \hbar} u_{p r} \\ S(\varphi)=p \cdot x+\int_{-\infty}^{\varphi} d \varphi^{\prime} \frac{2 e p \cdot A\left(\varphi^{\prime}\right)-e^{2} A^{2}\left(\varphi^{\prime}\right)}{2 k \cdot p}\end{array}\right.$
Quasiclassical form Connection to WKB approximation

$$
\psi(x)=\sqrt{\rho(x)} e^{-i S(x) / \hbar}
$$

Compton scattering

Breit-Wheeler process

QED processes in the Furry picture

Compton scattering

$$
\begin{gathered}
S_{f i}^{\left(e^{-} \rightarrow e^{-} \gamma\right)}=-i e \int d^{4} x \bar{U}_{p^{\prime}, s^{\prime}}^{(o u t)}(x) \frac{\gamma \cdot e_{k, l} e^{i k \cdot x}}{\sqrt{2 k_{+} V_{0}}} U_{p, S}^{(i n)}(x) \\
d P^{\left(e^{-} \rightarrow e^{-} \gamma\right)}=\frac{d^{3} \boldsymbol{k}}{(2 \pi)^{3}} \frac{d^{3} \boldsymbol{p}^{\prime}}{(2 \pi)^{3}} \frac{1}{2} \sum_{l, s, s^{\prime}}\left|S_{f i}\right|^{2}
\end{gathered}
$$

Breit-Wheeler pair production

$$
\begin{gathered}
S_{f i}^{\left(\gamma \rightarrow e^{-} e^{+}\right)}=-i e \int d^{4} x \bar{U}_{p^{\prime}, s^{\prime}}^{(o u t)}(x) \frac{\gamma \cdot e_{k, l} e^{-i k \cdot x}}{\sqrt{2 k_{+} V_{0}}} V_{p, S}^{(o u t)}(x) \\
d P^{\left(\gamma \rightarrow e^{-} e^{+}\right)}=\frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{d^{3} \boldsymbol{p}^{\prime}}{(2 \pi)^{3}} \frac{1}{2} \sum_{l, s, s S^{\prime}}\left|S_{f i}\right|^{2}
\end{gathered}
$$

Higher order processes

Phototrident pair creation

Trident process

Locally-constant-crossed field approximation

Allows calculating strong-field probabilities for arbitrary fields using known results for constant crossed fields

Crossed: Ultrarelativistic particles see in their rest frame a field (Lorentz transformation):

$$
\begin{array}{ll}
\boldsymbol{E}_{\perp}^{\prime}=\gamma\left(\boldsymbol{E}_{\perp}+\boldsymbol{\beta} \times \boldsymbol{B}_{\perp}\right) & E_{\|}^{\prime}=E_{\|} \\
\boldsymbol{B}_{\perp}^{\prime}=\gamma\left(\boldsymbol{B}_{\perp}-\boldsymbol{\beta} \times \boldsymbol{E}_{\perp}\right) & B_{\|}^{\prime}=B_{\|}
\end{array}
$$

This means that the transverse components are amplified and for high γ become dominant. Moreover

$$
E^{\prime} \cdot B^{\prime}=E \cdot B \quad E^{\prime 2}-B^{\prime 2}=E^{2}-B^{2}
$$

are not amplified so for sufficiently fast particles the field is pretty much orthogonal $\frac{\left|\boldsymbol{E}^{\prime} \cdot \boldsymbol{B}^{\prime}\right|}{\boldsymbol{E}^{\prime 2}+\boldsymbol{B}^{\prime 2}} \sim \frac{1}{\gamma^{2}} \frac{\left|\boldsymbol{E}^{\prime 2}-\boldsymbol{B}^{\prime 2}\right|}{\boldsymbol{E}^{\prime 2}+\boldsymbol{B}^{\prime 2}} \sim \frac{1}{\gamma^{2}}$

Locally constant:

Emission in a thin $1 / \gamma$ cone originates from a very small part of the trajectory where the fields can be considered constant

QED processes

https://eli-laser.eu/science-applications/high-fields-physics/

Breit-Wheeler pair production

Linear: $\gamma+\gamma^{\prime} \rightarrow e^{+}+e^{-}$Yet to be observed
Observed in 1997 at SLAC 50 GeV electrons colliding with $10^{18} \mathrm{~W} / \mathrm{cm}^{2}$ lasers Non-Linear (multiphoton): $\gamma+n \gamma^{\prime} \rightarrow e^{+}+e^{-}$

Linear BW

Non-linear BW

Vacuum polarization

Euler-Heisenberg effective Lagrangian (in the lowest order in fields) - interaction of light with itself

$$
\mathcal{L}=\frac{1}{2}\left(E^{2}-B^{2}\right)+\frac{2 \alpha^{2}}{45 m^{4}}\left[\left(E^{2}-B^{2}\right)^{2}+7(\boldsymbol{E} \cdot \boldsymbol{B})^{2}\right]+\cdots
$$

Classical part - vacuum
Maxwell equations

Interaction - Maxwell equations in medium
part $\boldsymbol{P}=\frac{\alpha}{180 \pi^{2} E_{c r}^{2}}\left[2\left(E^{2}-B^{2}\right) \boldsymbol{E}+7(\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{B}\right]$

$$
\boldsymbol{M}=\frac{\alpha}{180 \pi^{2} E_{c r}^{2}}\left[2\left(B^{2}-E^{2}\right) \boldsymbol{B}+7(\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{E}\right]
$$

Calcite Crystal Birefringence

Birefringent medium!

Birefringence measurement

Phase shift between components $\Delta \theta$

Elliptical polarization

Now with lasers!

PVLAS experiment 2001 - ? (constant magnetic field, standing wave)

Light-by-light scattering

"Box diagram"

Di Piazza et al., Rev. Mod. Phys. 84, (2012) 1177

Coulomb assisted

S. Evans, R. Schutzhold, arxiv 2307.08345

Heavy ion collisions

QED cascades (shower vs avalanche)

Schwinger pair production

At critical fields $E_{c r} \sim 10^{18} \mathrm{~V} / \mathrm{m}$ in laboratory frame
Decay rate in constant electric field: $\quad \Gamma \propto \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp \left(-\pi n \frac{E_{c r}}{E}\right)$

Even stronger fields?

QED stops being perturbative in radiation fields

Mironov, Meuren, Fedotov PRD 102 (2020) 053005

$$
\begin{aligned}
& \frac{(n+1)}{n} \sim \alpha \chi^{2 / 3} \square \quad \text { When } \alpha \chi^{2 / 3} \\
& \chi \geq 1 \quad \text { Ritus-Narozhny conjecture } \\
& \chi \geq 1600 \quad \text { (remember - this means } 1600 E_{\text {cr }} \text { in R.F.) }
\end{aligned}
$$

Strong-field electrodynamics in Flying focus pulses

Antonino Di Piazza MPIK, Heidelberg

John Palastro \& LLE, Rochester

Dillon Ramsey

and other people working on Flying Focus fields at LLE, IST, and UCLA

Manfred Virgil Ambat Philip Franke Dustin Froula Bernardo Malaca Warren Mori Miguel Pardal Jacob Pierce Jeremy Pigeon Hans Rinderknecht Jessica Shaw Tanner Simpson David Turnbull Jorge Vieira Kathleen Weichman
This project is supported by EU Marie Sklodowska-Curie grant No. 101105246-STEFF

What are Flying Focus pulses? Spatiotemporal control of laser peak intensity!
a) Chromatic flying focus:

Froula et al., Nat. Photonics 12 (2018) 262.

e^{-}interacting with Gaussian pulse

Electron on the axis interacts approximately with a field

$$
\boldsymbol{A}_{\perp} \approx \frac{\boldsymbol{A}_{0}}{\sqrt{1+z^{2} / z_{0}^{2}}} \cos \left(2 k_{0} z\right)
$$

ρ - Interaction length / 2 (in units of Rayleigh range)
e^{-}interacting with Flying focus pulse

Electron at $\eta \approx 0$ (at focus) sees approximately field:

$$
\boldsymbol{A}_{\perp} \approx \boldsymbol{A}_{0} e^{-r^{2} / 2 \sigma_{0}^{2}} \cos \left(2 k_{0} z\right)
$$

Which is on the axis $r=0$

$$
\boldsymbol{A}_{\perp} \approx \boldsymbol{A}_{0} \cos \left(2 k_{0} z\right)
$$

just plane wave field!

Use of high-intensity lasers for RR measurements

Deceleration formula
Cole et al., PRX 8 (2018) 011020; Poder et al., PRX 8 (2018) 031004 Astra-Gemini
Laser parameters: $E_{\text {tot }} \sim 10 \mathrm{~J}, \xi_{0} \sim 10, P_{\text {ave }} \sim 0.25 \mathrm{PW}, t_{\text {int }} \sim 40 \mathrm{fs}$

$$
\gamma(t)=\frac{\gamma_{0}}{1+\kappa(t)}
$$

Images (top, bottom) from Cole et al., PRX 8 (2018) 011020

Where the deceleration factor $\kappa(t)$ is for both ultrashort Gaussian pulses and FF pulses

$$
\kappa_{\mathrm{FFP}}\left(t_{\mathrm{int}}\right)=2.03 \frac{E_{t o t}[J] \varepsilon_{0}[\mathrm{GeV}]}{\sigma_{0}^{2}[\mu \mathrm{~m}]}
$$

Long flying focus pulses (tens of ps) reach the same RR deceleration as ultrashort gaussian pulses (tens of fs) of the same energy
(MF et al., PRA 105 (2022) LO20203)

$$
P_{\mathrm{ave}} \propto a_{0}^{2} \propto 1 / t_{\mathrm{int}}
$$

The necessary power is up to 10^{3} times lower and ξ_{0} is up to ~ 30 times lower

Charged particle beam control (MF et al., PRE 107 (2023) 055213)

Ponderomotive potential barrier in $\ell=1$ OAM FF pulse:

$$
\left.\overline{\left|\boldsymbol{A}_{\perp}\right|^{2}}\right|_{\eta=0}=\frac{\mathcal{A}_{0}^{2} r^{2}}{\sigma_{0}^{2}} e^{-2 r^{2} / \sigma_{0}^{2}}
$$

which travels with the electron bunch!

Initial transverse phase space

Evolution of the RMS radius $R(t)$

Vacuum birefringence in FF pulses (MF et al., arXiv:2307.11734)

$$
\begin{aligned}
& \text { Phase shift: } \\
& \Delta \theta_{\ell}=\frac{32 \alpha^{2}}{15} \frac{\mathcal{E}_{\ell}}{e^{2} E_{c r}^{2}} \frac{\hbar c}{\lambda_{\gamma} \sigma_{\ell}^{2}} \Sigma_{\ell} \Lambda_{\ell} \\
& \Sigma_{\ell} \text { - transverse overlap } \\
& \Lambda_{\ell} \text { - longitudinal overlap }
\end{aligned}
$$

$(1) \|)]$ eli

 Thank you for your attention!

 Thank you for your attention!}
martin.formanek@eli-beams.eu
www.eli-beams.eu

