

Plasma physics and Ultra-High Intensity laser-matter interaction in the ELI Beamlines' E3 hall

Florian Condamine

ELI Beamlines

31.08.2023

Dolní Břežany, Czech Republic

IMPULSE is funded by the European Union's Horizon 2020 programme under grant agreement No. 871161

31.08.2023

- $\,\circ\,$ Lasers and technology
- Example of commissioning campaign (L4n ns-kJ class laser)
- Example of high-repetition rate solid targetry system for UHI interaction

ELI Beamlines

Science case

- $\circ\,$ Long-Pulse interaction :
- > Laboratory astrophysics
- Inertial Confinement Fusion related studies
- $_{\odot}\,$ Shot-Pulse interaction at high-intensities :
- Gamma-ray generation
- LWFA pump-probe experiments
- $_{\odot}\,$ Short-Pulse interaction at ultra high-intensities :
- QED studies

··· Among many others

Current and mid-term future setups

	L3-SFL (Short Focal) - <i>2024</i>	L3-LFL (Long Focal) - <i>2024</i>	L4n - <i>2023</i>	L4n + L3- SFL / LFL - <i>2024</i>	L4f
Laser parameters	12 J 27 fs ~ 450 TW	12 J 27 fs ~ 450 TW	500 J (2 <i>ω</i>) 2 ns to 10 ns		~ 500 J (1 <i>ω</i>) 150 fs ~ 3 PW
Focusing optics	f/3.6 OAP f/1.2 OAP	~f/24 spherical mirror	~f/10 lens DPP available		f/3 OAP
Wavelength	810 nm	810 nm	527 nm or BB		1054 nm
Repetition rate	~0.1Hz (single shots) 3.3 Hz bursts	~0.1 Hz (single shots) 3.3 Hz bursts	1 per 3 min		1 per 3 min
Synchronization				~10 ps	
Actual status	Commissioned	Commissioning 2024	Commissioned	Sync. Comm. 1 st exp. 2024	<i>Commissioning 2024</i>

Laser technology

- + L4 laser can be used uncompressed with pulse shaping from 0.5 ns to 10 ns.
 - Long-pulse front-end for narrowband at 527nm.
 - CPA front-end for chirped-broadband operation.
- The maximum energy on target is ~0.6 kJ at 2w (527nm).
- During the commissioning phase (2022/2023), the repetition rate is limited at 1 shot / 3 min.
- The rate will be increased to 1 shot / min in mid-term future.

L4f-ATON

Laser technology

Compressed, L4 will reach a maximum energy of ~1.5 kJ for a ~150 fs pulse duration (~10PW).

+ The repetition rate is also expected to be 1 **shot / minute** at full performance.

Laser technology

E3 experimental hall

P3 experimental chamber

E3 hall has one the biggest civil experimental chamber for welcoming these different beams.

Aluminum chamber for avoiding
activation issues.

Despite the large volume, vacuum
reaches the 9E-6 mbar operating pressure in ~1h.

P3 experimental chamber

https://my.matterport.com/show/?m=fkP3VjGbYyq

eli

Setups

Angle L4n and x-rays at TCC = 112° Angle L4n and L3 at TCC = 58°

Laser technology

L4p/f-ATON - *mid-term future*

Users will have the possibility to synchronize a ps and a fs version of L4.

The laser seed will be the same and the square beam will be divided in two sections and separated inside the experimental chamber.

In this configuration (concept) :

- L4f 1kJ max 150 fs
- L4p 1kJ max 0.7 ps, 1 ps, 2 ps, 5 ps or 10 ps
- Delay between -1 ns and +2.5 ns

14

Velocity Interferometer System for Any Reflector (VISAR)

- Streaked Optical Pyrometer (SOP)
- X-ray Streak Camera (~0.7ps resolution, ~100eV to ~10keV)
- Soft X-ray flat crystal spectrometer (~400 to ~800eV)
- Very high-resolution X-ray spherical crystal spectrometer (~800eV to ~10keV)
- *High-reflectivity cylindrical mosaic crystal spectrometer (~4keV to ~20keV)*
- Back-scattering devices for Laser Plasma Instabilities studies
- Electron and gamma-ray spectrometers (up to ~GeV)
- Ion Time Of Flight (TOF)
- Thomson Parabola

Why commissioning campaigns ?

- Need to understand how the machine works (communication with laser scientists, etc.)
- Implement a procedure for safe operation (alignment, ramp-up)
- \circ Fine tuning and test of diagnostics

Not a one-day activity. Several weeks runs shared over 1 or 2 years before smooth operation

First commissioning in June 22

F. P. Condamine et al., *Commissioning results from the high-repetition rate nanosecond-kilojoule laser beamline at the extreme light infrastructure,* Plasma Phys. Control. Fusion **65**, 015004 (2023)

Second commissioning in Nov./Dec. 22 709 shots on target in 10 days Back-Scattering Diagnostics (SBS, SRS, TPD) commissioned

Time	Laser ener		
10:43	101,68	11.37	179.81
10:46	289,28	11.37	475,04
10:49	337,12	11.40	475,04
10:52	330,72	11.45	430,90 E02.60
10:55	394,56	11.40	276.06
10:58	460,8	11.49	120 22
11:01	432,64	11.52	420,32 E10 72
11:04	464.64	11:55	510,72
11:07	455.84	11:56	508,52
11.07	400,04	12:01	205.04
11.10	444,52	13:25	295,04
11.15	447,04	13:28	329,76
11:10	450,88	13:31	359,2
11:19	436,96	13:34	499,36
11:22	423,36	13:40	508
11:25	456,48	13:43	508,8
11:28	478,08	13:46	406,56
11:31	479,84	13:49	486,72
11:34	472		

Examples of pulse shaping capabilities (March 23)

Examples of pulse shaping capabilities (March 23)

- High-Repetation lasers = Need for fast targetry
- O Ultra High Intensity = Extreme and complex environment
- ➢ EMPs
- Radiations
- Stability

- High-Repetation lasers = Need for fast targetry
- Ultra High Intensity = Extreme and complex environment
- ➤ EMPs
- Radiations
- Stability

As we are using cutting-edge laser technology, we can over-engineer a super sophisticated technique that will look amazing

Solid targetry for UHI and HRR lasers

- High-Repetation lasers = Need for fast targetry
- Ultra High Intensity = Extreme and complex environment
- ≻ EMPs
- ➤ Radiations
- Stability

Possible to shoot solid targets for several hours

One stenner moto	or nulls the tane
one stepper mote	n puils the tape.

The tape is tensed using the non-motorized shaft that applies a resistance to the motor movement.

The system can be used in single shot mode or in burst mode

In single shot mode, the stepper motor keeps tension on the target through its holding torque.

In burst mode, the stepper motor keeps tension by pulling the tape.

Tape target system

Hands-On activity on Friday

Tape target system

15 μm thick copper tape

All elements are easily interchangeable

- Two target heads in titanium are used to position the target.
 - Custom design can be made.
 - Easy replacement in case of damage.
- Tape is maintained at TCC with 2 tungsten carbide rods.
 - Very precise machining.
 - Highly resistant in extreme environment.
 - Easy and cheap replacement.

Carbide rods

Tape target system

300° angle of view for diagnostics

- Large slit at the center to shoot the laser from the rear side
 - Very convenient to place diagnostics close to the target
- A secondary slit gives view on the target from the side
 - More space to put diagnostics in the equatorial plane
 - Convenient for symmetrical diagnostics.

26

2 commissioning experiments have been performed in E3 hall with the L3 laser in 2021.

31.08.2023

- L3 shot a total of \sim 4500 times on target during these two campaigns (3 + 1 weeks).
- Tape target has been successfully used in burst and single shot operation.

Generation of hot electrons induced X-rays shows a very good shot-to-shot stability

Ka lines are generated when hot electrons generated during the laser-matter interaction are ionizing K-shell of atoms.

Measuring the Ka yield, the standard deviation is:
- 6.6 +- 0.5% for the 25μm thick iron
- 10.6 +- 3% for the 7.6μm thick copper

Target stability

After the campaign, the stability of the tape was measured using damaged carbide rods

All along the campaign, carbide rods have been slowly damaged due to the proximity with the interaction point.

The standard deviation of the tape in the focal plane using these rods is 8.6 um (for a 15um thick copper tape)

Compatible with the L3-HAPLS best
 confocal parameter (12.3um for an F/3 OAP).

Results discussed and available in: F.P. Condamine et al. Review of Scientific Instruments **92**, 063504 (2021)

Thank you for your attention PS: We are hiring post-docs / junior scientists.

florian.condamine@eli-beams.eu

