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Need compact
sources of y-rays
100 keV — multi-MeV

» X-ray applications: imaging of
materials, molecular and
ultrafast studies

Optical laser YFEL
» y-rays can be used for A~1 um ¢ ~10 keV
imaging high-z materials, g,~1eV 4

nuclear physics



Optical laser vs XFEL
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Options for scalability towards y-rays

» Conventional B-fields are limited to several T.

» Increasing &, is the only option for reaching higher &,
0 &, =10 GeV — g, = 18 keV
o &, =100 GeV - ¢, = 1.8 MeV

» Alternative: use laser or quasi-static laser-driven plasma fields.

» These fields are much stronger than the static fields and thus offer a
promising solution for generation of hard x-rays and y-rays.

£,/ = 0.4, Ne = — B, ~44x10°T



Objectives & Outline

» Objectives:

o provide a qualitative picture of electromagnetic emission by
energetic electrons in strong laser and plasma fields

o provide a framework that can be used to understand current
research

» Outline:

o review the fundamentals of emission by relativistic electrons
o Introduce basic setups for laser-driven x-ray sources

o Introduce a basic setup for a laser-driven gamma-ray source



Dipole emission

» Constant velocity = no radiation.

» Acceleration (w) causes a non-relativistic electron to emit
electromagnetic waves:
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Emission by relativistic electron

» Instantaneous rest frame: nonrelativistic motion — dipole emission

» Lab frame: emission is determined by the acceleration in the
instantaneous rest frame (v, = 0)

2 e* , 2 e*
P = 3 3|Wrest|

— 2 — 2
3m2C3 (‘Ellrest‘ + ‘EJ_rest‘ )

» Transverse acceleration of a relativistic electron can be greatly enhanced

because of the field enhancement:
EJ_rest

=y|E, +—-|VXB Irest = I
y( n C[v ])

» Transverse acceleration is more effective in inducing emission of ultra-
relativistic electrons.



Change in emission pattern
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» Amplitude of the forward wave seen by an observer is stronger by a factor of

A

» The emission becomes forward-directed.



Emission cone
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Emission spectrum

Only this arc
contributes

» Distance travelled by electron during
emission: [ = 6R

» Duration of emission: At = [ /v

Observation
direction




Emission spectrum

Observation
direction

LKLl Relativistic electron emits

high frequency radiation :
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» Pulse length: L = cAt — [ = 1/y?

» L < | < R for ultra-relativistic electrons

L=R/y’

» Distance travelled by electron during

emission: [ = 6R = R/y

» Typical frequency: w, = c/L

» Duration of emission: At = /v » Fundamental frequency: wy = ¢/R



Key takeaways

» Emitted power and characteristic photon energy are set by the quantum
nonlinearity parameter y,:

Xe

P

Y
Es
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» Ultra-relativistic electrons emit forward.

£,/8 = 1.5,

1/2

E. = 1.3 x 1018 V/m






Laser field strength

» Laser field strength increases with laser intensity:

E[TV/m] =~ 2.7,/1[1018 W/cm?] B[MT] =~ 1/1[1022 W/cm?]

» Current record: [ =~ 1023 W/cm? - E =~ 1.5x10*V/m & B =~ 3 MT
» Not even close to the Schwinger field strength: Eq = 1.3 x 10*® V/m

» Convenient formula for estimates:

E
T s 2l > g~ 2 x 10 \/1[10 W/cm?]

a small parameter




Plane wave and forward-moving electron

» Electron in a plane EM wave propagating in vacuum (E = B):
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» The effects of B and E cancel each other out — strong suppression
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» Emission of forward moving electrons is inefficient.



Plane wave and backward-moving electron

» No suppression for a backward moving electron (8 = m):

vE %
Xe =E_s(1 —ECOSH)

=1
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E
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» Counter-propagating geometry is effective for the emission of energetic
photons

E
c /e =15y, ~ 3v— The smallness of E/Eq
y/ ¢ Xe 4 E is partially offset by y




All-optical counter-propagating setups

Two beams

» All-optical counter-propagating
Laser-accelerated L aser beam setups can be achieved using
e-beam two (a) or one (b) laser beam.

j » Laser Wakefield Acceleration

(LWFA) has been the preferred
mechanism for generating
electrons with ¢, = 100 MeV.
L aser-accelerated Reflected
e-beam laser beam

» LWFA requires a moderately
% relativistic intensity of I~5 X

1018 W/cm?.




Mechanism of Laser Wakefield Acceleration

Longitudinal
E-field
of the bubble

Wake-field cavity

Relativistic electron bunch

+
—>
+

Gas

Laser pulse

Example:

laser
e 30TW,1J
e 5x 1018 W/cm?

electrons
¢ &, = 80 MeV

Ta Phuoc et al., Nat. Photonics 6, 308 (2012)

» Laser pulse expels electrons, creating a positively charged cavity.

» The cavity (bubble) generates a forward-moving longitudinal E-field.

» Electrons injected at the back of the bubble are accelerated forward.



X-ray source using a reflecting mirror

Ta Phuoc et al., Nat. Photonics 6, 308 (2012)

Wake-field cavity

Laser pulse (fs)
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» Electron energy: €, = 80 MeV

» Laser field strength at 5 x 1018 W/cm?:

E/Es =~ 2 x 103V = 4.5 x 10

significant
Increase

» Dimensionless parameter:

Ye = 2V E/Eq =~ 1.4 x 1073
» Photon energy: & = 1.5x.&. = 170 keV

» 108 photons were measured —» 107° J

» Energy conversion efficiency: 107°






Argument for using plasma fields

» Emission of electrons co-propagating with the laser is inefficient:
41/2

i 2 laser
y — 1 N —> 1 — _)2 lase,rN 1 E
E, (E+E[”XB]) (7 o X E R,

Xe

» Plasma can generate a strong transverse quasi-static E field without a B-
field counter-part to cancel out the effect:

» In a co-propagating setup, plasma fields can be effective in inducing
photon emission: y?* > ylaser for EP! « Elaser

» The same applies to strong laser-driven plasma B-fields.



LWFA x-ray source without reflection

Wake-field cavity Transverse » Field of the bubble is the
. E-field field of a uniform cylinder:
Relativistic electro/nb{ch T I Yy
E, ~1rw2, /2
N + n 1 pe/
D— —>
+ T 2 2
4 w5e = 4mMnge“/m

Gas \/

» Transverse E-field of the bubble causes electron oscillations.

» Deflections by this field induce forward emission of x-rays:

plasma
&, = 1.5x.€, = 1.5¢, lES L> g, [keV] = 5 x 10™**r[um]y?n,[cm™]
_

Amplitude of
electron oscillations




Hard x-ray source from LWFA

Cole et al., Sci. Rep. 5, 13244 (2015)
Experimental
Scintillating
Setup screen
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Deflected

electron beam » Laser driVing LWFA:
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window
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» Electron density JESCEICIIieZ D

Laser Helium Magnet Bone X-ray 18
beam gas cell sample camera Tle ~ 3 X 10 C

[lelplels]ETo il iVeiilelaNe] ) Accelerated electrons: €, = 720 MeV
y =~ 1.4 x 103

» Emitted x-rays: ¢,[keV] = 5 x 10™**r[um]y*n,[cm™"]

g, ® 59 keV forr =~ 2 uym

» Photon number: 10 photons (g, > 1 keV)

» Energy conversion efficiency is less than 107>



Switch to DLA to generate multi-MeV photons

» LWFA requires the plasma to be underdense:

Ne K Ngp X My /A% =~ 10%1 cm®

» Increasing n, to reach g, > 1 MeV is not an option.
» We would need to increase y by a factor of 10 to get to &, > 1 MeV.

» Alternative: use an acceleration mechanism not restricted to n, < n,-.

» Direct Laser Acceleration (DLA) is a possible candidate that can

generate 100 MeV electrons at high laser intensity.  Pukhov etal., POP 6, 2847 (1999)
Hussein et al., NJP 23, 023031 (2021)

» Key feature of DLA: pulse length > c¢/w,, ﬁ No plasma bubble




Laser-driven plasma B-field

Bigser[MT] = /1[10%2 W/cm?]

(B) ~ 0.1B45er

» At sufficiently high n,, electrons are no longer expelled from the beam.
» The laser beam pushes electrons forward, creating a current filament.

» Plasma serves as a rectifier: “converts” oscillating Bj,. INtO static

azimuthal By; = 0.1Bgser- Stark et al., PRL 116, 185003 (2016)

Rinderknecht et al., NJP 23, 095009 (2021)



Direct Laser Acceleration (DLA)

» The strength of the oscillating field is quantified using

ay = |e|Ejgser/MewigserC = 0-85/1[|1m]\/1[1018 W/sz]

» Electrons become relativistic over one laser period at ay, > 1.

» The electron gains energy from E | .

» At ay > 1, the push by v, x §J.laser causes the electron to move forward.

Incoming Electron trajectory DLA generates

plane wave Single E v B a forward-directed beam
ectron | | of ultra-relativistic electrons

0@

v/




Gamma-ray emission

Plasma: n, < agn,

Return current
RS

Rinderknecht et al., NJP 23, 095009 (2021)
» DLA electrons are flying forward.

» Their energy gain from DLA reaches hundreds of MeV.
» B-field deflections cause the electrons to emit y-rays.

» Electron beam — forward-directed emission



Gamma-ray emission

plasma B-field

» DLA electrons (not shown) are flying forward.
» Their energy gain from DLA reaches hundreds of MeV.
» B-field deflections cause the electrons to emit y-rays.

» Electron beam — forward-directed emission




The need for a dense plasma

» Electrons with ¢, = 100 MeV require B,; = 150 kT to emit photons
with &, = 1 MeV

» The current density is limited by n,: |j| = |e|n.v, < |e|n,c

» The max B-field of a uniform current filament of radius R:

ne R[um]
ey (Alum])?

B, [KT] ~ 37

» We need n, ~ 4n,, for R = 1 um to achieve B,; ~ 150 KT.

» An over-dense plasma (n, > n.,) is needed to generate strong B,,;.



Relativistically induced transparency

» However, at ap < 1, the laser can only propagate through a plasma with

Ne K Ngp X My /A5

» At ay > 1, plasma electrons become relativistic (y,~ay) and a dense plasma
becomes transparent:

Ne K AgNey Ay = > 1

» Relativistic transparency = effective mass increase to y,m,

» High laser intensity is the key to driving strong plasma fields:
for a desired n,/n.., we need ay = 10n,/n. > 1



What is the most appropriate target material?

Increase in a

aone/ncr
Wﬁ
1 10 100 log(ne/ncy)
| ]l |
| @ g
ﬁ Desired | . t m
density ow-aensity
foams

['=5x10%W/em2 ) Option #1: plasma expansion

/10 = 0.8 um Lezhnin et al, POP 25, 123105 (2018)

ap, = 150 » Option #2: foams with low mass density (10 mg/cm?)
3 and a small pore size. Nagai et al, POP 25, 030501 (2018)

Ne/Ng = 150 » Foams enable a volumetric interaction with a plasma of

a desired density and thickness.



Efficiency of the gamma-ray emission

T. Wang et al, Phys. Rev. Applied 13, 054024 (2020)

Power scan
4 PW e ~ 190 . . .
......... y 7MY at fixed intensity

9 | ey > 1.0 MeV
o S e, > 10.0 MeV
ollimated — Sn.... +ey > 100.0 MeV
multi-MeV % 1.5 .4'. B~ o T .
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P g 1 y ...-9- ekt = LT LT T T R %
SO Z D A S R —
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» Discussed mechanism generates two into a 10° cone

collimated lobes of gamma-rays. .
1012}
'|i3a.-' ........

» High efficiency: 1.5 x 10~ of laser energy L =N
: . 12 . 5‘1010 I Gemnnnnnnns T L leluieleiale ]
s converted into 10'< multi-MeV photons S

" : 0 el be, > 1.0 MeV
within a single 10° cone. o 1o’ 100 Mev |
iy {e, > 100.0 MeV

» Also see: 1 2 3 4 6 10

Stark et al., PRL 116, 185003 (2016) P (PW)

Lezhnin et al, POP 25, 123105 (2018)
Hadjisolomou et al, Sci. Rep. 12, 17143 (2022)



Summary

» Hard x-rays and multi-MeV y-rays can be generated by ultra-
relativistic laser-accelerated electrons interacting with laser and
plasma fields.

» Single laser beam setup: use LWFA for hard x-rays and DLA for y-
rays.

» Efficient y-ray generation requires a high intensity laser and an

over-dense plasma.
Questions?

Contact A. Arefiev at
aarefiev@ucsd.edu
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