DEPARTMENT OF MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING

X-ray imaging techniques and their application to novel light sources

Silvia Cipiccia

DEPARTMENT OF MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING

AXIMA ADVANCED X-RAY IMAGING

AXIMA ADVANCED X-RAY IMAGING

- Each source has different specific features
- Not a solution fits all

Multimodal imaging with incoherent sources

Coherence

- Quality of the beam: high coherence =
 - Spatial coherence:
 - tells us how c focus your sc
- Temporal coherence: tells us how r
- Definition of coherence: same frequer
- Signature of coherence: interference

Spatial coherence from ducks **FREE**

Wayne H. Knox; Miguel Alonso; Emil Wolf

Check for updates

Physics Today **63** (3), 11 (2010); https://doi.org/10.1063/1.3366225

van Cittert- Zernike theorem: An incoherent source will manifest a coherent wavefront at large distance

Generation of spatially coherent water waves from randomly distributed wave disturbances produced by 13 ducks jumping into a pool at time 00:47:12. The frame times are indicated.

Spatial Coherence

• Similarly, can be calculated for the temporal coherence length

• The source is monochromatic

$$\Delta p = \frac{d}{2}\sin\theta$$

$$S_2 P_1 - S_2 P_2 = d\sin\theta$$

$$S_1 P_1 - S_2 P_1 = 2d\sin\theta$$

$$\Delta \varphi = \frac{2\pi}{\lambda} 2d \sin \theta$$

$$\sin \theta \approx \frac{\delta}{2L}$$

$$\Delta \varphi = 2\pi \frac{d\delta}{L\lambda} \quad \text{When } \Delta \varphi = \pi \text{ out of phase}$$

 $lateral\ coherence\ length = \frac{L\lambda}{2\delta}$

Example

Synchrotron

- Source size~ 100 um
- Wavelength 8 keV -> 0.155 nm
- Distance 100 m
- Spatial coherence length: 80 um

• X-ray laboratory source

- Source size~ 200 um
- Wavelength 8 keV -> 0.155 nm
- Distance 2 m
- Spatial coherence length: 0.8 um
- Laser driven source (betatron)
- Source size~ 2 um
- Wavelength 8 keV -> 0.155 nm
- Distance 2 m
- Spatial coherence length: 80 um

Coheemtotiar Miticos impging

- Radiation is scattered from a sample and is focussed through a lens into an image plane
- The detector is placed in the image plane and captures the intensity image (lost phase information)
- The image is limited in resolution by the quality of the lens profile to the high scatter angles

phase

ptical

ADVANCED X-RAY IMAGING

Coherent diffraction imaging

Recover the relative phase

Replace the function of the lens with a • computational reconstruction

Allows to recover both the modu • components of the wave

Is not limited by the quality of t ulletcomponents (perfect transfer fun tion)

XPCD

ADVANCED X-RAY IMAGING

Ptychography: Scanning Coherent Diffraction Imaging

Ultramicroscopy

An improved ptychographical phase retrieval algorithm for diffractive imaging

-sc

D

Andrew M. Maiden *, John M. Rodenburg

Ultramicroscopy 109 (2009) 1256-1262

Source

d

• Extends the coherence by scanning

 Does not require pre-knowledge of the illumination
 D2 (far field)

Sample raster

scanned

pinhole

7 September 2023

ELI Summer School 2023

Coherent X-rav beam

X-ray ptychography

- Nanoscale resolution
- Sensitive to small changes in electron density
- Quantitative

- Requires high quality beam:
- high coherence

Human Chromosomes (stain-free) I. Robinson, A. Bhartiya (UCL)

X-ray ptychography

Magnetic domain imaging

CLAIRE DONNELLY et al. PHYSICAL REVIEW B 94, 064421 (2016)

Electronic science

Figure 2: PXCT of detector ASIC chip.

High-resolution non-destructive threedimensional imaging of integrated circuits

 $\label{eq:mirror} Mirko\, Holler^l, Manuel \, Guizar-Sicairos^l, Esther \, H.\, R.\, Tsai^l, Roberto\, Dinapoli^l, Elisabeth\, Müller^l, Oliver\, Bunk^l, Jörg\, Raabe^l\, \&\, Gabriel\, Aeppli^{1,2,3}$

NATURE | VOL 543 | 16 MARCH 2017

Batteries

d) Charged

Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle[†]

León Romano Brandt, 🕲 *^a John-Joseph Marie, ^b Thomas Moxham, ^a Dominic P. Förstermann, ^b Enrico Salvati, 🕲 ^{ac} Cyril Besnard, ^a Chrysanthi Papadaki, ^a Zifan Wang, 📴 ^a Peter G. Bruce [©] ^{bdef} and Alexander M. Korsunsky [©] ^a

GHENT UNIVERSITY

Detector

Conceptediffrationitaiding with an LMJ Spherotron? • SMALL laboratory Sheffield: Sasha Mykhaylyk

• Brilliance 10¹¹ photons/(0.1%BW s mrad² mm²)

PHYSICAL REVIEW LETTERS

X-Ray Ptychography with a Laboratory Source

Darren J. Batey, Frederic Van Assche, Sander Vanheule, Matthieu N. Boone, Andrew J. Parnell, Oleksandr O. Mykhaylyk, Christoph Rau, and Silvia Cipiccia Phys. Rev. Lett. **126**, 193902 – Published 12 May 2021

GHENT

UC

ADVANCED X-RAY IMAGING

diamond

КĶ

Imperial College London

Science and

Technology

Facilities Council

Central Laser Facility

Imaging with incoherent light Sources

- Large source size: spatially incoherent
- Polychromatic: temporally incoherent
- Standard imaging: absorption imaging
- widely used for medical and industrial applications

Is it possible to extract more information?

Edge Illumination-Beam Tracking

Robust

- Fully achromatic
- Low spatial coherence (large source size)

Limits of the technique

- Resolution:
- Single shot: mask period
- Dithering (scanning): mask aperture
- Geometrical limits:

How it looks like

ELI Summer School 2023

Beamlets with and without sample

7 September 2023

diamond

GHENT UNIVERSITY

Ϋ́Υ

Imperial College

London

Science and Technology Facilities Council

Central Laser Facility

Zentrum Berlin

Beam Tracking with a laser-driven source

КĶ

Imperial College

London

Tungsten mask: 12 um aperture, 39 um period. Laser micromachined by Scitech Precision Bridges to reinforce the self-standing structure

Detector

- Andor Ikon L
- 1024x1024 pixels, 13 um pixel size

Zentrum Berlin

Resolution

- Single shot: mask period
- Dithering: mask aperture

UC

Dithering acquisition

Science and Technology Facilities Council

Central Laser Facility

Parameters

- Sample orange peel
- 4 dithering steps
- Pixel size 10.7x30 um

GHENT UNIVERSITY

• 100 cumulated shots per dithering step

КК

Imperial College London

Transmission

Refraction

Scattering

ΑΧΙΛΛ

ADVANCED X-RAY IMAGING

A. Doherty et al. *'Femtosecond multimodal imaging with a laser-driven x-ray source'.* Comm. Physics, in review

GHENT

UNIVERSITY

Scaling

Zentrum Berlin

Ϋ́

50 shots

- Binning 2: Pixel size 39x30 um

7 September 2023

ELI Summer School 2023

ADVANCED X-RAY IMAGING

Thank you!

https://www.ucl.ac.uk/medical-physics-biomedicalengineering/research/research-groups/advanced-x-rayimaging-group-axim

s.cipiccia@ucl.ac.uk

7 September 2023

(d)

Science and Technology Facilities Council

Broadband ptychography

Detector as monochromator

- Hyperspectral detectors (e.g. Hexitec, SLcam)
- Edge subtraction
- Scanning Ni edge in a single acquisition
- Limitation:
 - Not compatible with high flux
 - Resolution limited by the detector bandwidth

Explore content Y About the journal Y Publish with us Y

nature > scientific reports > articles > article

Article | Open Access | Published: 22 August 2019

Spectroscopic imaging with single acquisition ptychography and a hyperspectral detector

Darren J. Batey 🖾, Silvia Cipiccia, Frederic Van Assche, Sander Vanheule, Juriaan Vanmechele 🏠 thieu N Boone & Christoph Rau

Broadband ptychography

Laser-driven x-ray sources

Unique Features

- Compact
- Femtosecond pulse duration
- Small source size \rightarrow high spatial coherence

To exploit at the best:

- Single-shot: to make sue of the femtosecond time resolution
- Multimodal: access multiple information in one acquisition

Ultra-fast imaging

Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator

J.C. Wood ^{CD}, D.J. Chapman, K. Poder, N.C. Lopes, M. E. Rutherford, J. G. White, F. Albert, K. T. Behm, N. Booth, J. S.J. Bryant, P. S., Foster, S. Gienzer, E. Hill, K. Krushelnick, Z. Najmudin, B. B. Pollock, S. Rose, W. Schumaker, R. H. H. Scott, M. Sherlock, A. G. R. Thomas, Z. Zhao, D. F. Eakins & S. P. D. Mangles Scientific Reports 8, Article number: 11010 (2018) [<u>Cite this article</u>

Phase Contrast

Single shot phase contrast imaging using laser-produced Betatron x-ray beams

S. Fourmaux,^{1+*} S. Corde,² K. Ta Phuoc,² P. Lassonde,¹ G. Lebran,¹ S. Payeux,¹ F. Martin,¹ S. Sebban,² V. Malka,² A. Rousse,² and J. Culter¹ ADVANCED X - RAY IMAGING

Source characterization

Science and

Technology Facilities Council

ҞҞ

Imperial College London

