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Overview

Hydrodynamic simulations.

Euler equations in Eulerian and Lagrangian frameworks.

Eulerian x Lagrangian x ALE methods.

Indirect Arbitrary Lagrangian-Eulerian (ALE)
methods.

Physical models for LPP.
Examples of hydrodynamic LPP simulations.

Conclusions.
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Hydrodynamic (fluid) simulations
Hydrodynamics = dynamics of fluids.

Use: setup of experiments, suitable parameters,
interpretation of experiments, . . .

Description of fluid by (hyperbolic) PDEs, solution o(,1)
by tools of Computational Fluid Dynamics. ’

Fluid properties represented by macroscopic
quantities — density, velocity, pressure, specific
internal energy, . .. l

Discretization:

: n—+1
— space: computational mesh, cells c; =
— time: sequence of meshes, time levels n. Pe -
Approximation of continuous density (other .
n —_

quantity) function p(Z,t) by its discrete values
pe = p(Ze, ).

Transformation of PDEs for p(Z,t) to system of algebraic equations for p”.
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Example: Finite difference method in 1D

. . . . . Ou ou __
Advection equation — simplest hyperbolic PDE: 5% +a 3 = 0.

Continuous space / time (x,t) discretized U?H pnt1
by series of meshes (z;,t"), i spatial index, Ay
n temporal index. ﬂ_,_.i.u_ﬁplk pn
Approximating derivatives by finite differences: Ti Tl
du _ iy wath)—u(z)  wi1—u; Az
oxr B0 h ~ Ax
All deri - ical sch : u?—l—l_u? Uj g — Uy 0

erivatives — numerical scheme: ———— +a—x_— = U.

Various differences — various schemes —
various properties.

Solving the scheme — update of quantities:

n+1l _ n At n n

Other possibilities: finite volumes, finite
elements, . ..

' |
Always approximate ! )b+



Euler equations

Simplest approximation — Euler equations.

System of hyperbolic PDEs representing conservation of mass, momentum,
and total energy:

pt + div(pw)=0, (1)
(p@); + div(p i) + grad p=0, (2)
E; + div(@ (E +p))=0. (3)

Here: p — density, @ — velocity, p — pressure, E = pe + 2 p|w]? - total
energy density, € — specific internal energy.

More unknowns than equations — system enclosed by equation of state
(EOS): p = P(p,e). ldeal gas — p = (v — 1) pe, where v — gas constant
(ratio of its specific heats).

General fluid (plasma) — complicated (non-linear) EQSes, often tabulated.



Transformation from Eulerian to Lagrangian framework
Transforming system to moving (Lagrangian) reference frame.

Example — conservation of mass in 1D: p;+(pu), = 0, expanding derivative:
ot +upr+ puy =0.

This can be written as % + pu, = 0, where % = % + %a% = % +ua%
is the Lagrangian (total, material) derivative.
N D 8 | =
In multiD: & = 57 +w- V.
Similarly for the whole system:
Dp
— V-w=0, 4
5y TPV (4)
D w S
— 4+ Vp=0, 5
Py T VP (5)
De
- = V=0 6
v AT (6)



Euler equations — notes

Eulerian form — usually for conservative quantities, Lagrangian form — usually
for primitive quantities, equivalent.

Inter-connected system of PDEs — cannot be solved analytically (except for
few special cases) = numerical methods.

Remains to define IC (p(Z,t = 0) = po(&)) and BC (wall, free, periodic,
physics dependent, . .. ) — can be most difficult.

Can be solved in both formulations.



Eulerian vs. Lagrangian methods

Eulerian methods:

— Fixed computational mesh, not changing in time.

— Fluid moves between mesh cells in the form of mass fluxes.

— Simpler methods, easier to analyze.

— Problem: Not suitable for highly-volume-changing problems — typical
in laser/plasma simulations, where strong material compressions and
expansions occur.

Lagrangian methods: ‘ ‘
— Computational mesh moves naturally with the fluid. “ “
— No mass fluxes, constant masses in cells. ‘3‘ :‘

— Optimal for strongly changing domains.
— Problem: Due to mesh motion, mesh can degenerate — non-convex, self-
intersecting, or completely inverted cells — increase of numerical error or

simulation faiure.mgg%
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Arbitrary Lagrangian-Eulerian (ALE) methods

e Combination of both approaches — mesh following the fluid motion +
guarantee its validity!!.

e Recently very popular, present in many hydrodynamic laser/plasma codes.
e 2 types: direct vs. indirect ALE.

e Direct ALE methods:

— Separate fluid and mesh velocities.

— More complicated equations — formulation of fluid flow on differently
moving mesh — convective term representing mass flux.

— Filtering dangerous velocity components (shear flow, vortexes) out from
the velocity field.

FACULTY OF
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Indirect ALE methods

Initialization
e Explicit separation of 3 steps: t=011=0
— 1) Lagrangian step = solver of Main |oop}
PDEs, evolution of fluid quantities Lagr. LT Eul.
and mesh in time; L TR .
— 2) Rezoning = 1untan ling and /| SSHMAtE e, _i=0
oning '81ng t=t+ At | : ' ‘
smoothing of computational mesh, |/ |; — ;4 S 'Mesh rezoning |
increasing its geometric quality; : ] ‘
- 3) Remap — conservative Inter- :Lagrangian solver I'-,':Remap
polation of all quantities from |{| ® Fluid quantities |1} ¢ |nterpolate p, .
Lagrangian to rezoned mesh. : :\E/Igssh uMm, . : ?ﬁ::g;l;;e g
e Rezone + remap = Eulerian part of (0> tmas) V 1 "-." MOF, pe, o/
the ALE algorithm (fluxes). % low mer;lﬁxqua“ty ﬁYES
e Different strategies for triggering NO' - ) .
rezone/remap on  (degeneracy, B '{Wh”e t < tmax}*_
Eulerian, counter, . . . ) ‘ Fi:ish ’
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Example: Sedov blast wave

Euler Lagrange ALE20

t=0.00 t=0.00 1=0.00

N
N

w

w
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n
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=y

1 1F 1
0.51 0.57 0.51
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05" -0.57 -0.51
1 -1r 1
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Physical aspects — Model

e Laser plasma — simplest approximation by modification of energy equation:

Dp

_ = — T 7
L pV -, (7)
Dw

_ = — 8
De . -

where T is temperature,  is heat conductivity coefficient, and [ is laser
beam intensity profile.
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Physical aspects — Laser absorption

e Various models based on geometrical X wave optics.

e Simple model of laser absorption on the critical surfacel!/.

—

e Approximation of (D 1I). in critical cells,

—

(D). =0 in sub- or super-critical cells.

e Equation of absorption: pB< +pV - =

—(C4 V- I, Cy - absorption coefficient.

e Problems — (4 needed from user + full
absorption in one cell — series of “cell
explosions”.

e More advanced models.

e Raytracing!?! — explicit tracking of each single ray in the domain, including
its refractions on the cell boundaries.

e Wave-based models employing stationary solution of Maxwell equations!®/.

Ty NUCLEAR SCIENCES [1] Liska, Kucharik: EQUADIFF, 2007.
/KI’H‘%.? AND PHYSICAL 2] Chaudhury, Chaturvedi: PoP, 2006.
CTU IN PRAGUE [3] Kapin, Kucharik, Limpouch, Liska: CzJP, 2006. 13




Physical aspects — Heat conductivity

e Represented by parabolic term in the energy equation.

e Operator splitting — separate parabolic PDE in temperatures,
Tt_ 1 V(KVT)

- per

e Typically classical Spitzer-Harm heat conductivity coefficient k ~ T°/2.
e Approximation!!! of gradient and divergence by discrete operators G, D.

e Typically implicit scheme in time (T""1 — T™)/At+D GT" = 0, explicit
not suitable: CFL = many steps per 1 Lagrangian step.

e Numerical heat flux can be higher than physically feasible — limiter needed.

. ~ lim
o Usually: 1) solve — W™, 2) renormalize & = f™* 3

coefficient f™** € (0.05,0.3), 3) solve again with modified .

Kk, where the

e Need to solve system twice — new temperatures/energies more realistic.
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Physical aspects — EOS

e EOS crucial, strongly affects realistic simulations.
e |deal gas for simple fluid test, reasonably valid in low-density corona.

e Realistic EOSes — significantly more computationally expensive, often
tabulated.

e Quotidian EOS (QEOS)!! for real plasma — Thomas-Fermi theory for
electrons and Cowan model for ions.

e Sesame EOS2] — tables of measured values -+ several material theories
providing interpolation techniques.

e Various modifications — such as Badger or FEOS.

e HerEOS!3! — library for Hermite interpolation of tabulated data.

FACULTY OF

PRCPY NUCLEAR SCIENCES [1] More, Warren, Young, Zimmerman: PF, 1988.
/‘f{? AND PHYSICAL [2] Lyon, Johnson: LANL Report, 1992.
CTU IN PRAGUE [3] Zeman, Holec, Vachal: CMA, 2019. 15




Physical aspects — ALE in cylindrical geometry

e Many laser-related processes are cylindrically symmetrical, 2D code with
cylindrical geometry well approximates 3D reality.

e Switching to cylindrical geometry = adding r factor into all integrals —
different volumes, centroids.

e Lagrangian solver — adding r factor leads to Control Volume scheme:
integration mainly in forces.

e Mesh rezoning — no change, done as in Cartesian case.

e Remap: r arises during integration.
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Physical aspects — Others

e Many other models can be needed /usefull:

— Two-temperature model — separate electron/ion temperatures — two
energy equations + heat exchange term. More realistic for non-ideal
plasma.

— Phase transition model — taking into account latent heat of melting and
evaporation, important for interaction with solid targets.

— Non-local energy transport — represents long-distance transfer of energy
due to material radiation.

e Our group develops Prague ALE (PALE) code — simulations of laser/target
interactions, experiments at PALS or ELI.
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Example 1: Disc target acceleration

e Simulation inspired by experiments on PALS system!!.

e Laser evaporates disc target, acceleration to tens/hundreds km/s!?.
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e Geometrical computational mesh, in disc only.

e Laser absorption, material evaporation upwards. Massive part of the disc
accelerated downward due to ablation (momentum conservation).

e Experimental disc velocity compared with simulations!®!, good agreement.
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Example 2: LICPA scheme

e Laser induced cavity pressure acceleration!!.

e Preparation, analysis, interpretation of PALS experiments.
Q i
e Simulations of processes in channel covered by a cavity. J§>| i e
< S %
: : > m 5>
e Cavity = large portion of laser energy transferred to shock| 2 &
. . . m T r=x
wave = higher impact velocity, larger craters. )% % "
— |m

e Many configurations: width of ablator/projectile, material of
projectile/target (CH, Al, Cu, Au), laser energy (100 — 400 J),
laser frequency (1w, 3w).

e Different aspects of experiments, hydroefficiency.

VvV d3svi

e Comparison of simulations and experiments (impact velocity,
shock speed, crater size) = reasonably good agreement.
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Example 2: LICPA scheme
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Conclusions

e Hydrodynamic simulations important for understanding of experiments.

e Lagrangian and ALE methods suitable for ICF and laser/target simulations.
e Physical models crucial for realistic results.

e Current codes able to perform realistic laser/target computations.

e Ongoing research, attractive topic.

milan.kucharik@f jfi.cvut.cz
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