

Facilities and available instrumentation related to EMPANADE

(With focus on neutron radiation)

Department of Radiation Safety and Security (ASI), Paul Scherrer Institute (PSI)

2025-09-03, Kickoff meeting SwissELITE Detector Project 3

Outline

Facilities

Continuos fields: Neutron Sources

Calibration laboratory:

- ²⁴¹AmBe, ²⁵²Cf(bare), 252 Cf(D₂O_{mod})
 - Limited energy range
- Reference quantity: H*10
 - Spectral distribution from simulations available
- Continuous dose rates: ~mSv/h
- Good to verify detector calibration during intercomparison exercises
- ⁶⁰Co, ¹³⁷Cs

02.09.2025

Continuous fields: High-energy neutrons

PHAIDRA*: Suitable for the characterization of neutron detectors (similar to the "CERF" field at CERN)

- Characterized by measurements (Bonner sphere spectrometer) and simulations
- Available dose rates: < 80 μSv/h

*PSI High-energy Area for Instrument testing and Dosimetry of RAdiation

Pulsed with high dose rates (FLASH)

- Measurements outside the shielding of a proton irradiation Gantry
 - Variable dose rates (up to Sv/h)
 - Pulse length: ms
 - Clinical protocols need to be used: Limited flexibility in varying parameters
 - Normalization: Proton current monitor in the beam delivery system
 - Calibrated by measurements (H*10) and Monte Carlo simulations
 - Neutrons with energies up to 250 MeV
 - Field with high gradient

Pulsed with short pulse length (SwissFEL)

SwissFEL is the Swiss X-Ray free-electron Laser accelerator facility of PSI Beam characteristics

- Electron energy: up to 5.8 GeV
- Charge per pulse: 10 200 pC/bunch
- Repetition rates: up to 100 Hz, single shot feasible
- Pulse length: 1- 20 fs

- Characterized by Monte Carlo simulations
 - Dose rates up to 200 μSv/h
- Stable beam monitoring

7 PSI Center for Corporate Services 02.09.2025

Available Instrumentation

Active neutron spectrometry

- Extended Range Bonner Sphere Spectrometer
 - 15 different moderator spheres
 - Measurement of different moderators using stable and normalized fields
 - Characterized by Monte Carlo simulations, verified in reference fields (PTB)
- → Major challenge: deconvolution of the data to obtain the neutron spectrum
- → Currently only suitable for steady fields

PSI

Active neutron survey instrument (for pulsed fields)

LUPIN 5401 BF3-NP (ELSE Nuclear)

- Routinely used at PSI (More than 65 instruments)
- Calibration: Relative to the field produced by ²⁴¹AmBe
- Suitable for measuring neutrons up to a few GeV
- Cylindrical moderator: Irradiation direction changes dose indication
- Integration period: 50 ms

10

- Maximal dose per pulse: 7.5 μS*
- Radiation sensitive electronics separated from detector unit

Active photon survey instrument (for pulsed fields)

NAUSICAA ICT-PF

- Pressurized ion chamber detector
- Calibration: Relative to the field produced by ¹³⁷Cs
- Energy dependent response
 - Simulations show comparable sensitivity to other particle types
- Integration period: 1 s

11

- Dose rate range: 10 nSv/h to100 mSv/h*
- Radiation sensitive electronics separated from detector unit

Passive photon dosimetry: Luminescence dosimetry

- Different materials available
- Advantages:
 - Precise
 - Tissue equivalent
 - Small
 - No dose rate dependence
 - Not affected by magnetic field

Passive neutron dosimetry (PADC*)

- Nuclear track detectors
- Evaluation needs extensive chemical and optical evaluation
- Lower detection threshold: 100 μSv with limited dose range
- Calibration
 - Relative to the field produced by ²⁴¹AmBe
 - Energy dependent response

Christensen, J. TM-96-23-1278 (2024), Mayer et al (2014) Radiat. Prot. Dosim. 161, 82-85 (2014)

*: Poly-Allyl Diglycol Carbonate

General remarks

Final remarks

- Focus PSI: Active neutron measurements
- Passive dosimetry:
 - Photons: No difference to ELI
 - not included in the current budget
- Measurement Campaigns:
 - Resource intensive (personal and technical)
 - -) Advance detailed planning necessary
 - Availability of facilities may be limited or to be changed on short notice
 - Survey instruments with different energy dependencies:
 - -) Definition of reference values crucial

Thank you for your attention

Department of Radiation Safety and Security Forschungsstrasse 111 CH- 5232 Villigen /PSI