Developing Technologies at General Atomics for Rep-rated Operation of High-Energy-Density-Physics Experiments

> Lane Carlson, Neil Alexander Debris Shield Development

Andrew Forsman, Alex Haid, Mi Do, Neil Alexander Rep-rated and Low-mass Targetry

Mario Manuel, Gilbert Collins, Chris McGuffey, Mike Jaris, Devin Vollmer GALADRIEL Experimental Operations

> Alicia Dautt-Silva, Brian Sammuli, Martin Margo GALADRIEL Controls and Machine Learning

Mario Manuel General Atomics November 3, 2022 2022 Extreme Light Infrastructure User Meeting

1

Inertial Fusion Technology (IFT)

Supporting High Energy Density Science Through Target Fabrication and Engineering Solutions

IFT produces 'targets' for NNSA's three Major ICF Science Facilities

National Ignition Facility

Z pulse power machine

OMEGA & EP laser facilities Material Properties

Radiation

Transport

Engineering

Feature

Output & Effects

>30,000 ft² (>2700 m²) of lab space >110 technical staff

Radiochemistry

NIF Products 1.2 MJ yiel

Hydrodynamics

GA has provided target and engineering solutions for 31 years

Engineering:

Science target

Targets are Experimental Platforms

Ignition target

Engineering: Innovative Diagnostic Capabilities

mm

SLOS

diagnostic

10 ps camera

2mm dia. beryllium shell

GENERAL ATOMICS

GA provides unique R&D for targets and diagnostics

Innovative multi-disciplinary materials and fabrication R&D coupled with operations excellence

- Extensive coating, synthesis, and fabrication facilities
- Engineered microstructures and properties
- Small lot R&D fabrication
- Precision characterization
- Custom equipment and instrumentation development

Projects presently underway relevant to rep-rated HED

• Debris shields

- Plastic membranes, ~2-3um thick, with open apertures up to ~51cm diameter

Target deployment

- Rastered targets, ELI-Beamlines tape-drive system

Large-volume and low-mass targets

- 2PP technology on tape-drive targets

Rep-rated diagnostics and controls (GALADRIEL)

- GA LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers
- 1TW (~25mJ in ~25fs,) at 800nm at up to 10Hz
- Diagnostics: Low-energy e-spec, beam profiler, SHWS, x-ray spec, comp. imag.
- Control feedback using diagnostic output (LWFA using e-spec, SHWS at 0.1Hz)

We are developing large debris shields for large laser systems

- Debris shields are "pellicle"-like optics
 - Thin polymer membrane affixed to a circular frame/hoop
 - ~2-4 microns thick
- LULI optics lab conducted initial tests on R&D prototypes with various films
 - Polymer film A had very little polarization effects (good for debris shield)
 - Polymer film B had strong polarization effect (good for waveplates)
 - Reproducibility being assessed
 - Looking to see if there is sufficient community interest develop ¹/₂ or ¹/₄ waveplates
- R&D prototypes have been sent to RAL for on-laser tests
- Production prototypes have been produced with ID's of 22 cm and 51 cm

R&D Prototype ID 20.3 cm

51 cm ID Production Prototype

LULI optics lab conducted several measurements on the R&D prototypes

- Wavefronts measured with Zygo, 150 mm diameter sample region
- Alterations to wavefront is minimal/acceptable and is between $\lambda/5 \lambda/8$
- Spectral changes measured with CARY 60
- Polarization measured with LULI designed device
- Focal spot aberrations measured with LULI designed device

R&D film	Zygo Wavefront PV (nm)	Wavefront RMS (nm)	Spectral changes in transmission (650-950 nm)	Polarization relative to B#2 (%)	Focal spot aberrations (@ 804 nm)	
Polymer film A#1	120	20	-	9	-	
Polymer film A#2	130	22	82% - 99% (WL dep.)	4	-	
Polymer film B#1	134	22	82% - 99% (WL dep.)	66	85%	
Polymer film B#2	96	18	82% - 99% (WL dep.)	100	85%	

(%) (pqmel) L

0,2

-Série1 -Série2

Polarization between crossed

🐳 GENERAL ATOMICS

Manufacturing testing

- Assembly process developed
- Plan for recycling rings
 - Ship used rings back to GA for cleaning and new film
 - How do we clean and recertify for use into the vacuum chamber again?
 - Outgassing test?
 - Aluminum ring, Film, Embedded debris?
- Separate assembly fixtures made for accommodating different film widths:
 - 62 cm wide films (Polymer A film for debris shields)
 - 50 cm wide films (Polymer B films for wave plates)
 - Potential for ¼ and ½-wave plates if there is sufficient interest to manufacture film at the precise thickness

Debris shield production prototypes made with 22 cm open aperture

Debris shield production prototypes made with 51 cm open aperture

Debris shields have threaded side holes to facilitate shipping and handling

CLF debris tests* at Gemini shooting solid targets

GENERAL ATOMICS

Projects presently underway relevant to rep-rated HED

Debris shields

- Plastic membranes, ~2-3um thick, with open apertures up to ~51cm diameter

Target deployment

- Rastered targets, ELI-Beamlines tape-drive system

Large-volume and low-mass targets

- 2PP technology on tape-drive targets

Rep-rated diagnostics and controls (GALADRIEL)

- GA LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers
- 1TW (~25mJ in ~25fs,) at 800nm at up to 10Hz
- Diagnostics: Low-energy e-spec, beam profiler, SHWS, x-ray spec, comp. imag.
- Control feedback using diagnostic output (LWFA using e-spec, SHWS at 0.1Hz)

Low-density foams in raster plates

Rastered Targets

ELI-Beamlines tape-drive system

*Condamine, RSI 92 (2021)

- GENERAL ATOMICS

Projects presently underway relevant to rep-rated HED

Debris shields

- Plastic membranes, ~2-3um thick, with open apertures up to ~51cm diameter

Target deployment

- Rastered targets, ELI-Beamlines tape-drive system
- Large-volume and low-mass targets
 - 2PP technology on tape-drive targets

Rep-rated diagnostics and controls (GALADRIEL)

- GA LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers
- 1TW (~25mJ in ~25fs,) at 800nm at up to 10Hz
- Diagnostics: Low-energy e-spec, beam profiler, SHWS, x-ray spec, comp. imag.
- Control feedback using diagnostic output (LWFA using e-spec, SHWS at 0.1Hz)

2PP-printed tube structures on flat substrates

1 µm ID, 20 µm Tall

2µm ID, 20 µm Tall

3µm ID, 20 µm Tall

5µm ID, 20 µm Tall

10 µm ID, 20 µm Tall

15 µm ID, 20 µm Tall

20 μm ID, 20 μm Tall

2PP-printed 'foams' with tailored density profiles

3D printed structured foam targets (General Atomics)

Low-mass copper targets ~5um-thick on copper ribbon

2PP-printed tube structures on ~30um-thick plastic ribbon

GA aperture-tape holds complex and rigid 3D structures, mitigates ablation debris, and can be flexed, rolled, and transported

First demonstration shots using L4n executed in November 2022

Projects presently underway relevant to rep-rated HED

Debris shields

- Plastic membranes, ~2-3um thick, with open apertures up to ~51cm diameter

Target deployment

- Rastered targets, ELI-Beamlines tape-drive system

Large-volume and low-mass targets

- 2PP technology on tape-drive targets

• Rep-rated diagnostics and controls (GALADRIEL)

- GA LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers
- 1TW (~25mJ in ~25fs,) at 800nm at up to 10Hz
- Diagnostics: Low-energy e-spec, beam profiler, SHWS, x-ray spec, comp. imag.
- Control feedback using diagnostic output (LWFA using e-spec, SHWS at 0.1Hz)

GA LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers

ARCO X Laser

 A. Oscillator
 B. Stretcher
 C. Amplifiers
 D. Compressor

Target Chamber
Laser Diagnostics
Laser curtains
Control terminal
Gas/pump systems

Electron and x-ray spectrometers to begin algorithm and controls development using 'simple' spectral data

MeV

3.5

2.5

1.5

0.5

Electron Spectrometer

➤ Magnet-based design coupled to a scintillator and CMOS sensor.

X-ray Spectrometer

> Transmission-crystal design coupled to a scintillator and CMOS sensor

Shack-Hartman Wavefront Sensor (SHWS) as a replace

us u repit

Angle of refraction in a plasma

Comparison of a) Mach-Zehnder interferometer and b) SHWS setups.⁵

Significantly simpler setup than interferometry, smaller dataset, and lighter analysis

SENERAL ATOMICS

- **≻** Two MLAs: f = 14.6 and 5.2 mm
- Tested on D₂ gas-puff Z-pinches: Good qualitative and quantitative agreement between SHWFs, Mach-Zehnder interferometry, and schlieren imaging.

Scintillating fiber-based beam profiler using orthogonal 1D projections

> Various reconstruction methods include:

Radon Transform: fast, well documented, works best with more data or assumptions.

Singular Value Decomposition (SVD): Fast, solves Ax = b with many penalizing/ weighting methods.

Projections at different

energies

Ridge Regression, etc: coefficient estimates improve accuracy, but significantly slower.

> Presently studying the behavior of the fiber arrays in terms of fiber-to-fiber and inter-layer transport of scintillated light.

Projects presently underway relevant to rep-rated HED

Debris shields

- Plastic membranes, ~2-25um thick, with open apertures up to ~51cm diameter

Target deployment

- Rastered targets, ELI-Beamlines tape-drive system

Large-volume and low-mass targets

- 2PP technology on tape-drive targets

• Rep-rated diagnostics and controls (GALADRIEL)

- GA LAboratory for Developing Rep-rated Instrumentation and Experiments with Lasers
- 1TW (~25mJ in ~25fs,) at 800nm at up to 10Hz
- Diagnostics: Low-energy e-spec, beam profiler, SHWS, x-ray spec, comp. imag.
- Control feedback using diagnostic output (LWFA using e-spec, SHWS at 0.1Hz)

