ELI ALPS NanoEsca surface science end station Spin and time-resolved momentum microscopy on solid surfaces

Martin Aeschlimann University of Kaiserslautern

NanoESCA surface science end station

eli

NanoESCA surface science end station

eli

NanoESCA surface science end station

Preparation chamber sample cleaning, preparation, and characterization

Cleaning:

- Ar⁺ ion sputtering
- Annealing (heat- and coolable manipulator)

mei

Preparation:

- **e-beam evaporator** for metal deposition
- gas dozer based on a capillary array
- magnetizer
 - Helmholtz coil
 - B field: up to 43 mT

<u>Characterization</u> (laterally averaged):

- LEED (Low Energy Electron Diffraction)
- AES (Auger Electron Spectroscopy): determination of surface structure and composition
- **XPS** (X-ray photoelectron spectroscopy):
 - quantitative chemical analysis of the surface (top few nm)
 - monochromatic Al K_{α} X-ray source
 - 128 detection channels
 - **RGA** (Residual Gas Analyzer) by quadrupole mass spectrometer

Analysis chamber NanoESCA – nano- Electron Spectroscopy for Chemical Analysis

Modes (outputs):

PEEM: Photoemission electron microscope

ToF-PEEM: Time of flight + DLD analyzer (delay line detector)

Spectroscopy for selected area: Channeltron detector after first hemisphere

IDEA: Imaging with dispersive energy analyzer

Imaging spin filter: IDEA + spin selective mirror: gold coated Ir(100) crystal

Light sources:

Internal (CW) sources:

- Hg arc lamp (5.2 eV 238 nm)
- He discharge lamp
 - HeI: 21.22 eV 58 nm
 - HeII: 40.81 eV 30 nm

Short pulsed sources:

- pump: HR laser fundamental (1.2 eV 1030 nm) 100kHz
- probe: HHG generated XUV (20-90 eV 62-13.8 nm) 100 kHz – "BeamLine condensed"
- Venteon CEP5 oscillator (1.5 eV 830 nm) 80MHz

Competing interactions of spin with charge and lattice

»eli

- the complex interplay between the fundamental sub-systems spin, charge, and lattice are responsible for the appearance of novel phases of matter.
- yield rich phase diagrams of states in novel correlated-electron materials

- the dominant interaction that is responsible for the formation of a specific phase is most often hard to determine in thermal equilibrium,
- by driving the material system temporally out of equilibrium and using time-resolved spectroscopy techniques (e.g. various photoemission techniques) paves the way to overcome these limitations.

Competing interactions of spin with charge and lattice

eli

microscopic mechanism ?

⇒ Utrafast thermal nonequilibrium allows to study the competing interactions of spin with charge and lattice

First HHG light in the NanoESCA end station :

23. September 2022

\Rightarrow Static measurements

Internal CW Light sources:

- Hg arc lamp (5.2 eV 238 nm)
- He discharge lamp
 - HeI: 21.22 eV 58 nm
 - HeII: 40.81 eV 30 nm

Csaba Vass¹, Gy. Halasi^{1,2}, G. Vári², A. P. Farkas^{1,2}, A. Berkó², K. Palotás^{2,3}, J. Kiss², K.M. Yu⁴, B. Stadtmüller⁴, M. Aeschlimann⁴, P. Dombi^{1,3}, Z. Kónya², L. Óvári^{1,2}

¹ELI-ALPS (Szeged, Hungary)
²ELKH-University of Szeged
³Wigner Research Centre for Physics (Hungary);
⁴Technical University of Kaiserslautern

Hexagonal boron nitride (h-BN) on metals

Why hexagonal boron nitride (h-BN)?

• structurally similar to the graphene

ille eli

- very good insulating support for graphene nanoelectronics only weakly influencing the properties of graphene.
- easy to synthetize and outstanding stability

hBN on metals: The surface structure is determined by

- the strength of interaction with the metal
- lattice mismatch

The interaction of h-BN with noble metals (Cu, Ag, Au) is weak. => (nearly) flat layers of h-BN

hBN on Rh(111) surface:

- strong interaction
- lattice mismatch 7%
- A "13 h-BN on 12 Rh" moiré structure is formed.
- The interaction is stronger with N atoms located on top of Rh atoms. These "pore" regions are closer to the surface.
- => periodic corrugation, called **nanomesh**; template function

Hexagonal boron nitride (h-BN) on metals

Why hexagonal boron nitride (h-BN) ?

• structurally similar to the graphene

I eli

- very good insulating support for graphene nanoelectronics only weakly influencing the properties of graphene.
- easy to synthetize and outstanding stability

hBN on metals: The surface structure is determined by

- the strength of interaction with the metal
- lattice mismatch

The interaction of h-BN with coinage metals (Cu, Ag, Au) is weak. => (nearly) flat layers of h-BN

hBN on Rh(111) surface:

- strong interaction
- lattice mismatch 7%
- A "13 h-BN on 12 Rh" moiré structure is formed.
- The interaction is stronger with N atoms located on top of Rh atoms. These "pore" regions are closer to the surface.
- => periodic corrugation, called **nanomesh**; template function

Auwaerter Surface Science Reports 74 (2019)

Moiré pattern arising from the superposition of two graphene lattices twisted by 4°

Hexagonal boron nitride (h-BN) on metals

Why hexagonal boron nitride (h-BN) ?

• structurally similar to the graphene

i eli

- very good insulating support for graphene nanoelectronics only weakly influencing the properties of graphene.
- easy to synthetize and outstanding stability

hBN on metals: The surface structure is determined by

- the strength of interaction with the metal
- lattice mismatch

The interaction of h-BN with coinage metals (Cu, Ag, Au) is weak. => (nearly) flat layers of h-BN

hBN on Rh(111) surface:

- strong interaction
- lattice mismatch 7%
- A "13 h-BN on 12 Rh" moiré structure is formed.
- The interaction is stronger with N atoms located on top of Rh atoms. These "pore" regions are closer to the surface.
- => periodic corrugation, called **nanomesh**; template function

M. C. Patterson et al. Phys. Rev. B. 89 (2014) 205423.; S. Berner, et al. Angew. Chemie Int. Ed. 2007, 46, 5115

Sample preparation & STM measurements

What happen if we cover the Rh(111) surface with epitaxial grown Au film?

Sample preparation:

mei

- Rh(111) cleaning with Ar⁺ sputtering & annealing cycles
- Au deposition @500K & annealing @1000K, afterwards
- Borazine exposure @1000-1050 K
 - decomposition of borazine $(B_3N_3H_6)$ at ~1050 K
 - h-BN nanomesh, self limited to 1 ML

borazine

XPS analysis of h-BN on Au covered Rh(111)

- The N 1s region of the h-BN nanomesh is composed of two components due to the pore-wire duality.
- The position of the wire component in the N 1s region is sensitively influenced by Au.
- The pore component shifts much less in the presence of Au.
- During h-BN growth, Au is removed from below the pore region, and is accumulated below the wire region with strong preference.
- In accordance with STM, the pore /wire XPS area ratio decreases as an effect of Au.

I eli

Sample preparation & STM measurements

What happen if we cover the Rh(111) surface with epitaxial grown Au film?

Sample preparation:

- Rh(111) cleaning with Ar⁺ sputtering & annealing cycles
- Au deposition @500K & annealing @1000K, afterwards
- Borazine exposure @1000-1050 K
 - decomposition of borazine $(B_3N_3H_6)$ at ~1050 K
 - Self limited to 1 ML

» eli

STM:

- The nanomesh morphology is present up to 0.9 ML of Au
- The pore diameter decreases with increasing amounts of Au
- At higher Au doses the surface stepwise flattens out

R. Gubó, G. Vári, J. Kiss, A. P. Farkas, K. Palotás, L. Óvári, A. Berkó, Z. Kónya, *Phys.Chem.Chem.Phys.* 2018, **20**, 15473.

Sample preparation & STM measurements

What happen if we cover the Rh(111) surface with epitaxial grown Au film?

Sample preparation:

- Rh(111) cleaning with Ar⁺ sputtering & annealing cycles
- Au deposition @500K & annealing @1000K, afterwards
- Borazine exposure @1000-1050 K
 - decomposition of borazine $(B_3N_3H_6)$ at ~1050 K
 - Self limited to 1 ML

ille eli

STM:

- The nanomesh morphology is present up to 0.9 ML of Au
- The pore diameter decreases with increasing amounts of Au
- At higher Au doses the surface stepwise flattens out

How does the electronic structure change as a result of increasing Au coverage?

R. Gubó, G. Vári, J. Kiss, A. P. Farkas, K. Palotás, L. Óvári, A. Berkó, Z. Kónya, *Phys.Chem.Chem.Phys.* 2018, **20**, 15473.

ARPES of h-BN/Ni(111)

eli

- h-BN on h-BN/Ni(111) has a *flat morphology* because of the lack of lattice mismatch.
- Flat h-BN is characterized by one π band and two σ bands.

Usachov et al PHYSICAL REVIEW B 82, 075415 2010

Typical ARPES laboratory setup

2D datasets $E(k_x)$

eli

Typical ARPES laboratory setup

2D datasets $E(k_x)$

In eli

Is there another way for ARPES?

Operational modes: real space vs. momentum space

In eli

Au(111) Fermi surface @117 K

Momentum space microscopy

In eli

Energy slices at the Fermi level

I eli

* Energy slices at the Fermi level

Constant energy slices I.

eli

- The π band shifted toward the lower binding energies with increasing Au coverage (the triangles corresponds to π bands open and became larger)
- The appearance of the new ξ band also visible on the relevant constant energy slice (h-BN/1.5MLAu/Rh(111))

Constant energy slices II.

The strong interaction of the Rh and h-BN influences the appearance of bands:

- π_{β} (pore): strong interaction dashed rings
- π_{α} (wire): weak interaction continuous rings

The stronger hybridization resulted in stronger changes in the appearance of the bands.

h-BN on Rh(111): consequences of nanomesh morphology

eli

The twofold character of the **nanomesh surface (pore and wire regions)** results in the doubling of h-BN bands: **two vertically shifted** π **bands** are observed. This is in accordance with Greber et al. Surf. Sci. 672-673(2018) 33.

ARPES of h-BN/Ni(111)

eli

- h-BN on h-BN/Ni(111) has a *flat morphology* because of the lack of lattice mismatch.
- Flat h-BN is characterized by one π band and two σ bands.

Usachov et al PHYSICAL REVIEW B 82, 075415 2010

h-BN on Rh(111): consequences of nanomesh morphology

The twofold character of the **nanomesh surface (pore and wire regions)** results in the doubling of h-BN bands: **two vertically shifted** π **bands** are observed. This is in accordance with Greber et al. Surf. Sci. 672-673(2018) 33.

eli

- The pore-wire duality, is present in the band structure also at Θ_{Au} =0.7 ML, and at Θ_{Au} =0.9 ML, but vanishes at Θ_{Au} =1.5 ML Au, when the h-BN monolayer is completely flat according to STM.
- The π and σ band-splitting also observable at intermediate Au coverages: 0.7 & 0.9 ML, respectively. The π band shifted toward the lower binding energies with increasing Au coverage.

h-BN on Rh(111): consequences of nanomesh morphology

ille eli

Pore-wire duality was observed also for the σ bands, but those are split into even more branches (~6): replica bands as observed on h-BN/Ir(111), e.g due to photoelectron diffraction on the superlattice (Usachov et al. Phys. Rev. B 86, 155151 (2012)).

Benchmark experiment:

eli

Band structure view on ultrafast demagnetization

Stoner versus Heisenberg

Conventional demagnetization: spin-dependent band structure

I eli

Conventional demagnetization: spin-dependent band structure

eli

Static studies

Momentum Microscopy Mode

attosecond

In eli

Со

Au

T ~ 120K, VUV He I Symmetrized (3 fold) CBE near E_f .

2D Spin Filter

eli

- A monolayer gold on a Ir(100) single crystal.
- Spin polarizing mirror to detect the lateral spin-polarization of either an real or k-space image. (Spin quantization axis P)
- Opposite sign of Shermanfunctions at two working points for imaging.

Spinfiltereffect: Two working points I and II

I eli

Reflection (scattering yield)

Spin Asymmetry in Elastic Electron Scattering

Figure of Merit

Technical Reference Manual of 2D Imaging Spin Filter, FOCUS

Spin-resolved PEEM in Real Space

eli

I_↑ I_↓

Spin-resolved PEEM in Momentum Space

eli

Spin-resolved PEEM in Momentum Space

In eli

23. September 2022

In eli

Finally, there is HHG light!!!

K-space images by NanoESCA using XUV source (33th harmonic) of the GHHG beamline

Au(111) near Fermi surface

eli

Rh(111) near Fermi surface

Exposure time: 6.7 min

Time-zero on Rh(111)

» eli

- NIR pump (1.2 eV, 12-15 fs) and XUV probe (~42 eV, ~50-60 fs) were applied.
- The XUV monochromator was used without pulse front tilt compensation to achieve higher photon flux.
- Time zero was found using the TOF analyzer of NanoESCA in spectroscopy mode.

Area normalized TOF spectra as a function of delay. Kinetic energy is referred to the Fermi level.

THANKS TO ALL CO-WORKERS

Gyula Halasi Csaba Vass Arnold P. Farkas Péter Dombi University of Szege Gábor Vári András Berkó Krisztián Palotás János Kiss Zoltán Kónya

Technical University of Kaiserlautern

Ka Man Yu Benjamin Stadtmüller Martin Aeschlimann

European Union European Regional Development Fund

Hungarian Government

INVESTING IN YOUR FUTURE