The Extreme Light Infrastructure User Meeting

ELI-NP status and perspectives

Speaker Name: Călin A. Ur

Director ELI-NP

3 November 2022

ELI-NP Infrastructure

(http://eli-np.ro)

ELI-NP

- Experiment building
- Office building
- Guesthouse
- Canteen
- Access control building

Largest geothermal system in Europe ~ 6 MW

Variable Energy Gamma System

2 x 10 PW High-Power Laser System

2 x 10 PW + 1 x 1 PW Laser Beam Transport System

Over 32.000

sqm of built

area and

270.000 cubic

meter of air to

condition

Laboratories and workshops

9 Experimental areas

Experimental building

Experimental building: Main Equipment

Experimental building: High Power Lasers Experimental Areas

Experimental building: Gamma Beam Experimental Areas

Experimental building: Combined Experiments Area

High Power Laser System

LSD department (Head of LSD: Ioan Dancus)

E4:

Operational al since 2020

Measured parameters of HPLS

Output type	100 TW	1 PW	10 PW
Pulse energy (J) *	2.5	24	242
Pulse duration (fs) **	< 25	< 24	<23
Repetition rate (Hz)	10	1	1/60
Calculated Strehl ratio from	> 0.9	> 0.9	> 0.9
measured wavefront			
Pointing stability (µrad RMS)	< 3.4	< 1.78	< 1.27
Pulse energy stability (rms)	< 2.6 %	< 1.8 %	< 1.8 %

**Measured with attenuated input energy in the compressors

E5:

HPLS + LBTS @ 10 PW - Publications

高功率激光科学与工程 ISSN 2095-4719 CN 31-2078/O4

HIGH POWER LASER SCIENCE AND ENGINEERING

PRESS

Volume 8 Issue 4 December 2020

High Power Laser Science and Engineering, (2020), Vol. 8, e43, 15 pages. doi:10.1017/hpl.2020.41

RESEARCH ARTICLE

High-energy hybrid femtosecond laser system demonstrating 2×10 PW capability

François Lureau¹, Guillaume Matras¹, Olivier Chalus¹, Christophe Derycke¹, Thomas Morbieu¹, Christophe Radier¹, Olivier Casagrande¹, Sébastien Laux¹, Sandrine Ricaud¹, Gilles Rey¹, Alain Pellegrina¹, Caroline Richard¹, Laurent Boudjemaa¹, Christophe Simon-Boisson¹, Andrei Baleanu², Romeo Banici², Andrei Gradinariu², Constantin Caldararu², Bertrand De Boisdeffre³, Petru Ghenuche³, Andrei Naziru^{3,4}, Georgios Kolliopoulos³, Liviu Neagu³, Razvan Dabu³, Ioan Dancus³, and Daniel Ursescu³

¹Thales LAS France, 78990 Élancourt, France

²Thales Systems Romania, 060071 București, Romania

³Extreme Light Infrastructure – Nuclear Physics, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, 077125 Bucharest Magurele, Romania

⁴University of Bucharest, Faculty of Physics, 077125 Bucharest Magurele, Romania (Received 1 August 2020; revised 22 October 2020; accepted 26 October 2020)

Abstract

CAMBRIDGE

UNIVERSITY PRESS

We report on a two-arm hybrid high-power laser system (HPLS) able to deliver 2×10 PW femtosecond pulses, developed at the Bucharest-Magurele Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility. A hybrid frontend (FE) based on a Ti:sapphire chirped pulse amplifier and a picosecond optical parametric chirped pulse amplifier based on beta barium borate (BBO) crystals, with a cross-polarized wave (XPW) filter in between, has been developed. It delivers 10 mJ laser pulses, at 10 Hz repetition rate, with more than 70 nm spectral bandwidth and high-intensity contrast, in the range of 10^{13} :1. The high-energy Ti:sapphire amplifier stages of both arms were seeded from this common FE. The final high-energy amplifier, equipped with a 200 mm diameter Ti:sapphire crystal, has been pumped by six 100 J nanosecond frequency doubled Nd:glass lasers, at 1 pulse/min repetition rate. More than 300 J output pulse energy has been obtained by pumping with only 80% of the whole 600 J available pump energy. The compressor has a transmission efficiency of 74% and an output pulse duration of 22.7 fs was measured, thus demonstrating that the dual-arm HPLS has the capacity to generate 10 PW peak power femtosecond pulses. The reported results represent the cornerstone of the ELI-NP 2 × 10 PW femtosecond laser facility, devoted to fundamental and applied nuclear physics research.

Keywords: lasers; high-power laser pulses; ultra-short laser pulses

High Power Laser Science and Engineering, (2022), Vol. 10, e21, 5 pages. doi:10.1017/hpl.2022.11

HIGH POWER LASER SCIENCE AND ENGINEERING

LETTER

HIGH POWER LASER

SCIENCE AND ENGINEERING

10 PW peak power femtosecond laser pulses at ELI-NP

Christophe Radier¹, Olivier Chalus¹, Mathilde Charbonneau¹, Shanjuhan Thambirajah¹, Guillaume Deschamps¹, Stephane David¹, Julien Barbe¹, Eric Etter¹, Guillaume Matras¹, Sandrine Ricaud¹, Vincent Leroux¹, Caroline Richard¹, François Lureau¹, Andrei Baleanu², Romeo Banici², Andrei Gradinariu², Constantin Caldararu², Cristian Capiteanu², Andrei Naziru^{3,4}, Bogdan Diaconescu³, Vicentiu Iancu^{3,4}, Razvan Dabu³, Daniel Ursescu^{0,3,4}, Ioan Dancus^{0,3}, Calin Alexandru Ur^{0,3}, Kazuo A. Tanaka^{3,5}, and Nicolae Victor Zamfir³

 ¹Thales LAS France, 78990 Élancourt, France
 ²Thales Systems Romania, 060071 Bucuresti, Romania
 ³Extreme Light Infrastructure - Nuclear Physics, IFIN-HH, 077125 Magurele, Romania
 ⁴Physics Doctoral School, Bucharest University, 077125 Magurele, Romania
 ⁵Laser Engineering, Osaka University, Osaka 565-0871, Japan (Received 7 March 2022; revised 31 March 2022; accepted 17 May 2022)

Abstract

We report on the generation and delivery of 10.2 PW peak power laser pulses, using the High Power Laser System at the Extreme Laser Infrastructure – Nuclear Physics facility. In this work we demonstrate for the first time, to the best of our knowledge, the compression and propagation of full energy, full aperture, laser pulses that reach a power level of more than 10 PW.

Keywords: high-power laser; ultra-short laser pulses

Implementation \Rightarrow Operation 2020-2023

HPLS Operation 2021&2022

Beam time delivered in 2021 16 weeks @ 100 TW output & 20 weeks @ 1 PW output

Beam time delivered in 2022 (16 weeks @ 100 TW output & 27 weeks @ 100 TW output & 27 weeks @ 100 TW output & 5 weeks @ 100 TW output & 27 weeks @ 100 TW output & 5 weeks @ 1

HPLS Operation in 2021

Typical operation day:

100 TW

Beam Delivery in 2021&2022 – on both arms

Beam Delivery in 2021&2022 – 1 PW E5

100 TW Experimental area E4

E4: 100 TW

100 TW area infrastructures

- 2 interaction chambers in stainless steel (HV VE1 and UHV – VE2)
- 5 turning boxes
- 10 turbomolecular pumps (maglev), 1 cryo-pump
- Integrated control system, automatic / manual modes
- VE1 typical pump time: 60 mins; venting + opening: 45 mins
- Possibility to control the vacuum level up to 10⁻⁶ mbar
- Large soft-wall cleanroom equiv. ISO7

Large Optics available

- 6" flat mirrors w/ motorized mounts
- F = 1500mm off-axis parabola, AOI = 6.25°
- F = 520mm off-axis parabola, AOI = 7.5°

Other components for the setup

movement stages and detectors, optical tables, optical diagnostics available on-site

https://users.eli-np.ro/experimental_facilities.php

100 TW Laser beam features

100 TW laser beam features

- Energy: < 2.5 J
- Pulse duration: < 25 fs
- Central wavelength: ~ 810 nm
- Beam diameter: ~ 54 mm
- Laser pointing fluctuation on target:
 ~ ±7 μrad
- Energy stability: <2.5%
- Repetition rate: 10 Hz (single shot possible)

For solid target experiments: the angle of incidence on target must be > 1/F# to avoid BR issues.

Example of focus properties

- Parabolic mirror:
- Spot size diameter:
- Encircled energy

~ 70% @ 1/e²

1.5 m focal length (F# \sim 28)

 \sim 22±2 μ m at FWHM

Laser pointing stability

Laser pointing stability representing the laser far-field horizontal and vertical pointing fluctuation as function of time. The r.m.s. of the fluctuations is ±7 µrad.

100 TW Diagnostics

Light detectors

- Energy meters: 10μJ-2.5mJ: Gentec QE95LP-S-MB-QED-D0, 1mJ-250J: QE8SP-B-BL-D0
- Wavefront sensor: Phasics SID4-H
- CMOS cameras: Basler acA2440-20gm, daA3840-45uc
- Photomultipliers 300-700 nm: Hamamatsu H10721-110, H10721-20
- Fast photodiodes 200-1100 nm: Thorlabs DET025A/M, DET10A2, DET08C/M, Alphalas UPD-35-UVIR-P
- Optical Spectrometers in visible and near-infrared: Ocean Optics HR4000 CG-UV and NQ512-1.7
- Optical plasma probe (as a pick-up from the main laser beam): 1w, 1/2" dia. and up to 100 mJ with pulse duration as the main laser beam, for Interferometry and Shadowgraphy.

Charged particle diagnostics

- Thomson parabola
- Stack detector
- Electron spectrometer
- ICT

Nd:YAG laser available in E4:

- Litron LPY 7864G-10
- Single Longitudinal Mode, 2nd and 3rd harmonic modules available
- Synchronization with HPLS main laser via Stanford Research Systems DG645 delay generator
- Max. 2.75 J, pulse width 12-15 ns

The 100 TW LWFA results

First operation in 2020

Electron acceleration in gas targets (P.I. D. Doria)

- Gas jet target 2mm long
- SourceLab valve with controller SL-Smartshot (fast solenoid valve driver LX-03R and electro-magnetic valve A2-6443)
- Pure He and mixture He +2% N₂ were used
- F=1500mm parabola
- Max. electron energy attained with **Helium gas** ≈**220 MeV** with an energy spectrum having a certain degree of monochromaticity
- Max. electron energy reached using the gas mixture ≈ 320 MeV with a continuum energy spectrum, as expected when using a dopant such as N₂
- Electron diagnostics: spectrometer (up to 500 MeV) 16 cm long dipole magnet with 3 cm gap and ~0.7 T B-field, and a Lanex screen

Electron spectrometer raw images: a) signal with admixture, b) with pure He.

Experimental setup

1 PW Experimental Area E5

E5: 1 PW

1 PW area infrastructures

- 1 main interaction chamber (C1) in Aluminium
- 2 turning boxes + 2 large chambers (**C2, C3**) in stainless steel
- 9 turbomolecular pumps (1 cryo-pump on demand may be possible)
- Integrated control system, automatic /manual modes
- C1 typical pump time: 90 mins; venting + opening: 60 mins
- Vacuum level up to 10⁻⁶ mbar
- Small soft-wall cleanroom equiv. ISO7

Large Optics available

- 12"x8" rectangular flat mirrors w/ motorized mounts
- F = 5000mm off-axis parabola, AOI = 45°
- F = 707mm off-axis parabola, AOI = 22.5°

Other components for the setup

movement stages and detectors, optical tables, optical diagnostics available on-site

https://users.eli-np.ro/experimental_facilities.php

1 PW Laser beam features

100 TW laser beam features

- Energy: < 24 J
- Pulse duration: < 24 fs
- Central wavelength: ~ 810 nm
- Beam diameter: ~ 190 mm
- Laser pointing fluctuation on target: ~ \pm 1.5 µrad
- Energy stability: <2.5%
- Repetition rate: 1 Hz (single shot possible)

For the 2022-2023 user campaign only experiments with solid target and short focal are offered, SPM can be set on request

To avoid BR issues, the angle of incidence on target must be > 1/F# (i.e. >22.5°) w/o PM and > 1/2F# with PM

Example of focus properties

- Parabolic mirror: 707 mm focal length (F# ~3.7)
- Spot size diameter: ~ 3.6 ± 2 μm at FWHM
- Encircled energy

• Laser pointing stability

1 PW Solid target experiment diagnostics

Main diagnostics:

- 16 RCF stacks
- TP Ion spectrometer: online Lanex readout or IP plates.
- Laser specular and back reflection energy measurement
- Specular and back reflected laser spectrum
- Laser near field (full aperture), Far field, Energy, Spectrum (pick-up) on-shot
- Plasma probing: Shadowgraphy, Interferometry
- Pulse duration (Laser bay and Experimental area)
- Temporal Contrast measurement

Multi – Target system:

32 targets loaded for a day of shooting

Microscope objective for target alignment and focal spot optimization

 $1\,\mu\text{m}$ alignment precision

The 1 PW TNSA results

First operation in 2021

Ion acceleration from solid targets (P.I. M. Cernaianu)

- **Thick** and **thin foils** (e.g. Al, CH, DLC) ۲
- F=710mm parabola •
- Max. proton energy attained of 50 MeV with SPM ٠
- **Max. ion energy** attained: carbon ion **15 MeV/n** from DLC target by using a SPM

Shot parameters with plasma mirror

Laser beam power: 23.1 J, ~26 fs → 880 TW Intensity on target: ~ 4 x10²¹ W/cm² Target: 1.5 µm Al foil

Radiochromic film stack Thomson parabola data

Laser beam power: 19 J, ~75 fs → 250 TW Intensity on target: ~ 1 x10²¹ W/cm² Target: 380nm DLC (built in house)

Radiochromic film stack

Experimental setup

Proton density ~ 10^3 protons /cm²

The 1 PW LWFA results

First operation in 2021 Electron acceleration in gas targets (P.I. P. Ghenuche)

- Gas jet target and gas cell from 2mm to 2 cm long
- SourceLab variable metal gas cell, fix 3D printed gas cell, 2 mm metal gas jet
- Pure He and mixture He +2% N₂ were used
- F=5000mm parabola
- Max. electron energy attained with both Helium gas and admixture of ≈ 2 GeV
- Electron diagnostics: spectrometer (up to 3 GeV) 30 cm long dipole magnet with 3 cm gap and ~1 T B-field, and a Lanex screen

Experimental setup

Electron Beam Energy Spectra for pure He

Shadowgraphy and WFS (plasma channel)

Electron Beam Pointing in a typical day from gas admixture

Next: Commissioning of E1 & E6 @ 10 PW and E7 @ 1 PW

E1 target area (solid target) – Nuclear physics

- 2 x 10 PW laser beams: 240 J, 23 fs, 810 nm, ~ 45 cm
 dia. FWHM (or 10 PW @ 1/60 Hz and 1 PW @ 1 Hz)
- 2 Short focal parabolic mirrors F2.7
- 1 Plasma mirror
- 1 Cleanroom
- Experimental chamber: L x W x H of 400 x 330 x 178 cm^3

E6 target area (gas target) - QED

- 2 x 10 PW laser beams: 240 J, 23 fs, 810 nm, ~ 45 cm dia.
 FWHM (or 10 PW @ 1/60 Hz and 1 PW @ 1 Hz)
- 1 Short focal parabolic mirrors F2.7
- 1 Long focal ~30 m spherical mirror F60 @ 10 PW
- 1 Plasma mirror
- 1 Cleanroom
- Experimental chamber: L x W x H of 400 x 330 x 178 mm³

Commissioning of 10 PW experiments in E1 and E6

Large Optics - 30 m focal spherical mirror

- 1.5 m short focal off-axis parabolas

The installation of the short focal mirror in E1 area is done along with full diagnostic benches

Preparation of 10 PW E1 interaction chamber

E1 chamber: short focal mirror

Near-Field on parabola

Preparation of E7 interaction chamber

- First stage: 1 PW pulses @ 1 Hz
- Then: Multi-PW pulses + Electrons or gamma pulses from VEGA
- Commissioning experiment endorsed by ISAB: PPEx Production and photoexcitation of isomers
- Radiation reaction
- Pair creation in vacuum: ELI-NP whitebook, Prof. Habs
- Vacuum polarization
- All-optical vacuum birefringence: S. Ataman, Phys. Rev. A 97, 063811
- Ability to measure energy and polarization of high-energy gamma photons the GPC detector (Gamma Polari-Calorimeter)

Experimental building: Laboratories & Workshops

- Support for users
- Development
- Maintenance
- Training

http://www.eli-np.ro/labs.php

Laboratory Support

http://www.eli-np.ro/labs.php

Optics Laboratory (D. Ursescu) Bio Laboratory (M. Voda)

Target Laboratory (V. Leca)

A target laboratory support for fabrication and characterisation of solid targets

Dosimetry Laboratory (I. Mitu)

Personnel and area dose monitoring Radioprotection training

Laser Experiments Diagnostics Laboratory (V. Nastasa)

A laboratory support for testing and setting up diagnostics, and processing/analyzing detectors/films (e.g., CR39 etching)

Testing vacuum

Target Laboratory Support

Capabilities:	Tools:		
Fabrication of (ultra)thin/thick films (free- standing or supported)	RF/DC sputter deposition, e-beam evaporation, spin-coating, electro- chemical synthesis.		
Micro/nano-structuring (gratings, nanoparticles, nano-wires, nano-pillars, low density (porous) materials	Electron-Beam Lithography, photolithography, Reactive Ion Etching, Ar-ion milling, chemical methods		
Characterization (Surface characterization, elemental composition, morphology and topography, roughness, interface analysis)	X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy with Energy-Dispersive X- Ray Spectroscopy and Electron Backscatter Diffraction, optical profilometry and microscopy		
Surface treatments	Thermal treatments, polishing, surface reconditioning, plasma surface cleaning		
Micromechanical and micro assembly	Wafers cutting, targets frames, micromachining		

Theory and simulation support

(P. Tomassini, A. Berceanu)

Currently available computational resources include

- 1x128CPU Xeon 8358, 1Tb RAM
- 2x48CPU AMD Ryzen 3960X, 250Gb RAM
- 2x24CPU Xeon 8268, 1.5TB RAM
- 8x16CPU AMD Rome 7282, 256GB
- 2xA100 GPU, 160Gb, Nvlink

Laser solid with standard

- 16xV100 GPU SXM3, 512GB, Nvlink
- 16x10TB SATA, HDD

Available codes include

- EPOCH 2D (laser-solid, LWFA)
- Smilei 2D (laser-solid, LWFA)*
- PIConGPU (laser-solid, LWFA)*
- FB-PIC** quasi-3D (laser-solid with normal incidence, LWFA)
- Qfluid 2D cyl (LWFA)
- TSST (Nonlinear Thomson backscattering)
- ReINTS (Nonlinear Thomson Scattering at arbitrary angles and with structured pulses)

Nonlinear Thomson Scattering with standard and structured pulses

Thomson backscattering X ray source

Typical computational time

*2-3 days of computational time for a standard TNSA simulation with 15nm of resolution

**4-6h of computational time for a quasi-3D simulation of LWFA in the bubble regime, 1cm of propagation

Hydrodynamical simulations

First User Call

Common with ELI ERIC

Access Agreement / Terms&Conditions Period: October 2022 – March 2023 ELI-NP 17 proposals: 6 @ 100 TW & 11 @ 1 PW

ELI-NP Program Advisory Committee (PAC)

Meeting: 3-4 October 2022

Peter Thirolf (Chair)	Technische Universität München		
Leonida Gizzi	INO-CNR Pisa		
Karl Krushelnick	CUOS - University of Michigan		
Paul McKenna	University of Strathclyde, Glasgow		
Akifumi Yogo	ILE, Osaka University		
Victor Malka	Weizmann Institute of Science		
Antonino di Piazza	Max-Planck Institut für Kernphysik		

ELI-NP PAC Recommendations

Grade A: 1 @ 100 TW, 2 @ 1 PW Grade A-: 2 @ 100 TW, 4 @ 1 PW Grade B: 3 @ 100 TW, 5 @ 1 PW

E4 (100 TW beam)	Accent Pro 2000 s.r.l.	Romania
E4 (100 TW beam)	ELI-NP/IFIN-HH	Romania
E4 (100 TW beam)	ELI-NP/IFIN-HH	Romania
E4 (100 TW beam)	Victor Babes National Institute of Pathology	Romania
E4 (100 TW beam)	University of Oxford	UK
E4 (100 TW beam)	Advanced Science and Engineering, Hiroshima University	Japan
E5 (1 PW beam)	AOYAMA GAKUIN UNIVERSITY	Japan
E5 (1 PW beam)	ILE, Osaka University	Japan
E5 (1 PW beam)	CELIA, Talence	France
E5 (1 PW beam)	CLPU, Villamayor	Spain
E5 (1 PW beam)	INRS	Canada
E5 (1 PW beam)	INO-CNR, Pisa	Italy
E5 (1 PW beam)	Moscow Engineering Physics Institute	Russia
E5 (1 PW beam)	Soreq NRC, Yavne	Israel
E5 (1 PW beam)	Tata Institute of Fundamental Research	India
E5 (1 PW beam)	TU Darmstadt, GSI	Germany
E5 (1 PW beam)	Institute of Plasma Physics and Laser Microfusion, Warsaw	Poland

First User Call – Beam time schedule

		39	9.26	10.2		Machine Beam Time	10 PW - Beam time E1	10 PW commissioning
	er	40	10.3	10.9	Arm A 1 PW commissioning in E5 IC	1 PW - Beam time E5	10 PW - Beam time E1	10 PW commissioning
	tob	41	10.10	10.16	Arm A 1 PW commissioning in E5 IC	1 PW - Beam time E5	10 PW - Beam time E1	10 PW commissioning
	ŏ	42	10.17	10.23	Arm A 1 PW commissioning in E5 IC	1 PW - Beam time E5	10 PW - Beam time E1	10 PW commissioning
		43	10.24	10.30	Arm A 1 PW commissioning in E5 IC	1 PW - Beam time E5	10 PW - Beam time E1	10 PW commissioning
	er	44	10.31	11.6	Arm A 1 PW commissioning in E5 IC	1 PW - Beam time E5	Maintenance	New stretcher mirrro
	qu qu	45	11.7	11.13		Maintenance	10 PW - Beam time E1	10 PW commissioning
10	s love	46	11.14	11.20	ERIC call	100 TW - Preparation E4	10 PW - Beam time E1	10 PW commissioning
	ž	47	11.21	11.27	ERIC call	100 TW - Preparation E4	10 PW - Beam time E1	10 PW commissioning
		48	11.28	12.4	ERIC call	100 TW - Beam time E4	10 PW - Beam time E1	10 PW commissioning
	ber	49	12.5	12.11	ERIC call	100 TW - Beam time E4	10 PW - Beam time E1	10 PW commissioning
	mə	50	12.12	12.18	E4 equipment and vacuum system maintenance	Maintenance	Maintenance	
	Dec	51	12.19	12.25		Vacation	Vacation	
		52	12.26	1.1		Vacation	Vacation	

						Beam A			Beam B	Legal Holidays
A	Q	м	w	Start	End					
			1	1/2	1/8		Vacation	Vacation		
		La la	2	1/9	1/15		Maintenance	Maintenance		
		and	3	1/16	1/22		Maintenance	Maintenance		
	L		4	1/23	1/29	ERIC call	100 TW - Preparation E4	1 PW - Beam time E5		24/01 - Tuesday
	Г	×	5	1/30	2/5	ERIC call	100 TW - Beam time E4	1 PW - Beam time E5		
		nar	6	2/6	2/12	ERIC call	100 TW - Beam time E4	1 PW - Beam time E5		
	al	ebr	7	2/13	2/19		Maintenance	Maintenance		
		-	8	2/20	2/26	ERIC call	1 PW - Beam time E5	10 PW - Beam time E1	Flagship experiment - IMPULSE funding	
	Г		9	2/27	3/5	ERIC call	1 PW - Beam time E5	10 PW - Beam time E1	Flagship experiment - IMPULSE funding	
		rch	10	3/6	3/12	ERIC call	1 PW - Beam time E5	10 PW - Beam time E1	Flagship experiment - IMPULSE funding	
		W	11	3/13	3/19	ERIC call	1 PW - Beam time E5	10 PW - Beam time E1	Flagship experiment - IMPULSE funding	
L			12	3/20	3/26	ERIC call	1 PW - Beam time E5	10 PW - Beam time E1	Flagship experiment - IMPULSE funding	h -
			13	3/27	4/2		Maintenance	Maintenance		

User Facilities

Monitoring Beam conditions

Laser beam delivery information accessible from public areas of the laboratory

User Access

User Office @ ELI-NP

Head of Office: Dr Sophia Chen sophia.chen@eli-np.ro

Access based on the Terms & Conditions of Access <u>https://up.eli-laser.eu/downloads/Science-Call-TCA.pdf</u>

Registration as user

General training courses on:

- Local access rules
- General Health and Safety
- Laser Safety
- Radioprotection Safety

Long Term Storage of Data Access to ELI-NP Guesthouse and Canteen

Project co-financed by the European Regional Development Fund through the Competitiveness Operational Programme "Investing in Sustainable Development"

Extreme Light Infrastructure-Nuclear Physics (ELI-NP) - Phase II

~hank you.

www.eli-np.ro

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania" For detailed information regarding the other programmes co-financed by the European Union, please visit

www.fonduri-ue.ro, www.ancs.ro