

ELI Beamlines: Overview and Status

Daniele Margarone

Director of Research and Operations ELI Beamlines Facility

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

ELI Beamlines facility overview

> User Programme

- current user offer
- *future user capabilities*

Flagship Experiments

ELI Beamlines (mission profile)

Dolní Břežany, Czech Republic

- ✓ Provide unique tools to support scientific excellence worldwide
- ✓ Explore interaction of light with matter (plasma) at ultrahigh intensities (up to 10²³ W/cm²)

- ✓ Develop and operate four leading edge, high-power femtosecond laser systems (L1, L2, L3, L4) with high energy, high repetition-rate capability (10TW @1kHz, 100TW @ 100Hz, 1PW @10Hz, 10PW @0.01Hz)
- ✓ Offer secondary sources (X-rays and accelerated particles) with unique capabilities to users
- Enable pioneering research not only in plasma physics, laboratory astrophysics, and material science, but also in biomedicine, chemistry and other disciplines with strong multidisciplinary application potential

Paradigm shift

Dolní Břežany (before ELI BL)

First large research infrastructure in a CEE region

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

4

ELI Beamlines Facility

the High Energy Beams Pillar of ELI

daniele.margarone@eli-beams.eu

- 78 m beam path: from L3 compressor output to ELIMAIA target (E4)
- Optical beam path: 13 turning mirrors (8 in L3-BT section and 5 in ELIMAIA chambers)
- Excellent pointing stability of the integrated system: <u>1.3 μrad</u> (FWHM) jitter over 54 min of continuous operation (shot-toshot linear fluctuation on target <1 μm FWHM)

Laser beam transport example: L3-to-E4

Example of operation day (E4 ELIMAIA beamline) Total net time: 6 hr 40 min 43 s, 300 shots, total energy 2.76 kJ

Outline

ELI Beamlines facility overview

> User Programme

- current user offer
- future user capabilities

> Flagship Experiments

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

titute of Physics * * he Czech * demy of Sciences * *

8

L1 ALEGRA laser status

R. Antipenkov, P. Bakule, B. Rus (Dep.91)

- Picosecond OPCPA architecture: inherently high temporal pulse contrast
- System designed and built at ELI-Beamlines (using commercial thin-disk pump lasers)

Achieved 55 mJ / <15 fs pulses @ 1 kHz Routine operation for users

- ~30 mJ on target in E1
- Availability in experimental halls: E1 hall
- available on average 6.8 hours per day for planned user experiments in E1 hall

J. Andreasson et al. (Dep.88)

E1 Experimental hall X-ray beamlines & end-stations

Function is fundamentally related to dynamics! In the E1 experimental hall we have developed beamlines and stations for photon science experiments in the mid IR to Hard X-ray range at kHz

These are used for **time resolved experiments** using **pump-probe** techniques to study **femtosecond** to millisecond dynamics

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

* * EUROPI * * Europea * * Operatic * * Develop

HHG & PXS kHz beamlines in E1

Gas

Xenon

λ_{xuv} (nm)

≥50

O. Hort, D.D. Mai, J. Nejdl, S.V. Bulanov (Dep.86)

HHG

HHG in Neon

- Cu tape target, Liquid metal jet (in commissioning), Water jet
- ✓ X-ray optics: Montel (monochrom.) or polycapillary

X-ray source parameters	L1 @ 20mJ
Photons per shot into 4p srad	3 x 10 ¹¹
8 keV photons/shot on target	~ 10 ⁶
Source size	< 50 µm
X-ray pulse duration	< 300 fs

XUV energy (μJ)

2

capabilities and support technologies

J. Andreasson et al. (Dep.88)

Operation of user end stations for:

1. MAC: Science with Coherent XUV radiation

- Atomic, Molecular and Optical (AMO) science
- Coherent Diffractive Imaging (CDI)
- XUV Material science
- HHG source development

2. TREX: Hard X-ray science

- Diffraction and spectroscopy
- Plasma X-ray source development
- Pulse Radiolysis

3: Ultrafast optical spectroscopy

- Femtosecond Stimulated Raman Scattering (SRS) and Transient absorption
- time resolved spectroscopic ellipsometry
- **Transient Current Technique**
- 2D IR spectroscopy

For technical details of available instruments and beamlines: https://www.eli-beams.eu/calls/the-extreme-lightinfrastructure-call-for-users/

Lysosyme sample

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

L1-to-E1 kHz user programme statistics

Call	Number of applications	No of experiments performed	Number of beamtime weeks
ERIC Call 1	17		
Call 2	29	24	58
Call 1	22	22	60.5
Covid Call	0	1	1,5
Call 0	22	19	24
Sum	90	66	144

USERS BY COUNTRIES 2019-8/2022

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

L3 HAPLS laser status

High repetition rate Advanced Petawatt Laser System

- 1 PW 10 Hz repetition rate beamline
- Nd:glass helium-cooled DPSLL pump laser
- Ti:sapphire short-pulse chain, helium-cooled power amplifier
- World's highest peak power laser diode arrays
- High level of automation

Design performance:1 PW / 10 Hz
30 J / <30 fs</th>Current performance:0.5 PW / 0.5 Hz, 3⅓ Hz
13.3 J / 27.3 fs

Ramping to PW / 10 Hz in progress:

-1 PW / shot-on-demand	spring - summer 2023
- 1 PW / 3⅓ Hz	spring - summer 2024
- 1 PW / 10 Hz	spring - summer 2025

ELIMAIA beamline (E4) Ion Accelerator section

F. Schillaci, L. Giuffrida et al. (Dep.87)

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

Date:

Page 5

F. Schillaci, L. Giuffridaet al. (Dep.87)

Date:

Date:

ELIMAIA beamline (E4)

ELIMED ion beam transport and dosimetry section

Ion beam collimation system: 5 PMQs, 36mm magnetic bore, 100 T/m gradient with 2% uniformity

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

Ion beam energy selection system: 4 electro-dipoles, 55mm bore, 0.06 – 1.226 T with 0.5% uniformity, linear resolution with slit aperture size, active energy modulation possible

Dosimetry and Irradiation system (in-air): SEM for beam current monitor, Multigap chamber for relative-online dosimetry, FC for absolute dosimetry, automated sample irradiation system

ELI-ELBA beamline (E5) status and plan

G. Grittani, S.V. Bulanov (Dep.86)

- Electron acceleration line installed
- Counter Propagation line procured, waiting for delivery, installation completed by March 2023
- Set-up accommodates different wavefront splitters configuration, so the split ratio could be changed depending on user requirements
- Involvement of user for experimental diagnostics, data analysis and modeling is key to success

ALFA: kHz electron acceleration with L1

pilot experimental results

ALFA (Allegra Laser For Acceleration)

- 55 mJ (100 mJ planned)
- 16 fs on target
- 1 kHz on target
- 1-2 µrad pointing stability
- electron beam energy >50 MeV within reach with current laser parameters

Electron Beam L1 Laser

Laser focal spot

Supersonic nozzle

In-air User Station for sample irradiation

* * * EUROPEAN * * European SI * * Operational * * * Developmen

PEAN UNION an Structural and Investing Funds ional Programme Research, pment and Education

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

Date:

G. Grittani, S.V. Bulanov (Dep.86)

Page:

S

L4 ATON laser *kJ CPA system to provide 10 PW peak power*

P. Trojek, B. Rus et al. (Dep.91)

- Mixed Nd:glass in the power amplifiers providing spectral bandwidth >15 nm Pulse compression to ≤150 fs
- Advanced liquid cooling to achieve 1 shot /1
 minute
- Nanosecond kJ pulses with programmable temporal shape
- Compact dimensions, laser tables footprint 19.8 m x 6.1 m
- Developed by National Energetics / EKSPLA / ELI-Beamlines

arameter	Achieved value	
PA pulse energy	1512 J significant headroom, higher energy possible	
andwidth FWHM	~14 nm Gaussian fit non-optimized compressibility 154 fs	
ong pulse (LP) energy	1180 J significant headroom, higher energy possible	
ulse width	<0.5-10 ns	
temporal shaping	125 ps with 60 ps rise time	
urrent shot rate	1 per 2 minutes (high beam wavefront quality) 1 per minute (moderate quality)	

PA2 Beam size

- 323x323 mm kJ LP
- 620x620 mm 10 PW

Institute of Physics of the Czech Academy of Science

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

Courtesy of Diffractive Optics Group, NIF&PS, LLNL High-energy, low-dispersion (HELD) multi-layer dielectric (MLD) diffraction gratings for L4

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

20

P3 experimental platform (E3) L4-ns + L3

→ L4n as driver to generate shocks
 & L3 as diagnostic tool

→ L3-SFL: energetic protons (radiography), K-alpha, gammas (few MeVs); f/3 OAP, focal length 0.75 m

→ L3-LFL: betatron broadband radiation, potentially electrons (?!); f/20 spherical mirror, focal length ~5 m

→ L4n and L3 can be synchronized with a jitter of ~20 ps at present

| Page

P3 experimental platform (E3) L4-ns @ ~1shot/min

- → using P3 as a potential platform for **HEDP** in general and **ICF/IFE** in particular
- ➔ time-resolved diagnostics for LPI (Raman, Brillouin, TPD) and shock physics (VISAR/SOP) in commissioning stage

Hard X-ray diagnostic available inside the chamber
 Targetry: solid, gas, multi-layer and foam on tape & raster

multi-layer targets for shocks developed by ELI-NP for P3

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

tute of Physics *** e Czech * lemy of Sciences ** ,

L2 DUHA (R&D – ADONIS) >100 TW 20/50 Hz system with mid-IR aux beam

- 2J / 20fs / 50 Hz (100Hz)
- Nanosecond OPCPA
- Pump laser: 15 J @ 1030 nm DPSSL Yb:YAG
- Thin disk ps laser driving
 supercontinuum in bulk YAG: seed
 for high-energy OPCPA @ 820 nm
 & generation of 2.2 μm in DFG

LUIS in E5 (R&D – ADONIS & EUPRAXIA) high quality LWFA electron beams for FEL with L2

A. Molodozhentsev, S.V. Bulanov (Dep.86)

LUIS technologies in the E5-experimental hall

from incoherent to coherent (FEL) photon radiation

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

U. Chaulagain, J. Nejdl, S.V. Bulanov (Dep.86)

Driven by L3 (or L2) @ 10Hz (or 100Hz)

	Betatron	Compton
photon energy	10- 100 keV	50 – 5000 keV
photons/shot	> 1E9	> 1E8
Source size	< 5 μm	< 5 µm
pulse duration	~30 fs	< 30 fs

Joint ELI User Meeting 2022 daniele.margarone@eli-beams.eu

* * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *
 * *

Outline

ELI Beamlines facility overview

> User Programme

- current user offer
- future user capabilities

Flagship Experiments

ELI BL Flagship I (IMPULSE) XUV tuning in E1, J. Andreasson

Title: "Studies of collective dynamics at the nanoscale using intense, spectrally-tunable XUV pulses from High-Harmonic Generation"

Objectives:

- Experiments targeting "Resonant excitation of multiply excited pure and doped helium nanodroplets"
- Extend the applicability of the developed method to cover a **wider range of targets and pulse parameters** (mainly a wider range of XUV energies).

Means: L1 Alegra laser, E1 HHG source, MAC experimental station

Tasks: Improve on the ability to rapidly tune the photon energy to allow a scan to be done in one experimental day. Extend to higher XUV energy ranges

Talk by Marcel Mudrich (afternoon)

ELI BL Flagship II (IMPULSE) MULTI-LPI-P3, S. Weber

Title: "Probing dense laser-plasma with ultrafast X-rays & accelerated particles in the context of inertial confinement fusion & laboratory astrophysics"

Objective: Characterization of shocked material with a variety of diagnostic tools using synchronized **multi-beam configurations**. The **pulse-shaping capabilities of the L4n** driver beam allows to access EOS off the Hugoniot, thereby providing new insight into complex, dynamic states of matter under extreme conditions.

Means: P3 infrastructure and L4n/L3 laser beamlines

Tasks: I. Characterize state of matter with VISAR/SOP. II. Characterize state of matter with particle/radiation sources.

ELI BL Flagship II (IMPULSE) FLAIM, L. Giuffrida

Talk by Marco Borghesi (afternoon)

FLAIM at ELIMAIA

Flash and ultrahigh dose-rate radiobiology with Laser Accelerated lons for Medical research

Scientific Impact

- ✓ innovative regimes for ion acceleration (protons and C-ions) with a PW-class laser at ELIMAIA at high rep. rate
- ✓ high beam quality through dedicated ion beam transport at ELIMAIA/ELIMED for irradiation of biological samples
- ✓ novel clinical dosimetry through dedicated on-line, cutting-edge diagnostics available at ELIMAIA/ELIMED
- in-vitro cell (cancer and healthy tissues) and in-vivo (zebra fish) irradiation with proton/carbon beams using ultrahigh dose-rate and flash radiotherapy approaches (10⁹ Gy/s)

Technical Specifications:

- ✓ Laser parameters on target: L3 (>10J, <30fs, >10²¹W/cm², 0.01-1 Hz)
- ✓ on-shot, full-power, on-target laser, plasma, and ion diagnostics
- ✓ dedicated ion beam transport (ELIMED)
- ✓ on-shot, high rep. rate clinical ion dosimetry (ELIMED)
- $\checkmark\,$ dedicated radiobiology room or use of operational equipment in chemical/bio lab

- 1st ELI ERIC Call for User proposals, published in June, submission deadline 31 August 2022 (17 proposals for ELI Beamlines)
- ✓ ELI BL User Assisted Commissioning Call, published in October, submission deadline 5 November 2022 (L3 @ ELIMAIA-ELIMED, L4-ns @ P3)
- 2nd ELI ERIC Call for User proposals, to be published in January 2023, including high power laser capabilities like L3 HAPLS (PW-class, 3.3 Hz) and L4 ATON (kJclass, ns)

Thank you for you kind attention!

Partnership

EUROPEAN UNION
 European Structural and Investing Funds
 Operational Programme Research,
 Development and Education

