Research opportunities in ion acceleration and applications on the ELIMAIA beamline

M. Borghesi

Centre for Light Matter interactions, The Queen's University of Belfast, UK

L.Giuffrida, D. Margarone

ELI Beamlines facility Dolni Brezany, Cz

Outline

- ELIMAIA
- Proton source: current status and expectations
- Advanced acceleration mechanisms
- Target-based scheme for enhanced transport
- Application: ultra-high dose rate radiobiology

ELIMAIA user beamline

ELI Multidisciplinary Applications of laser-Ion Acceleration

ELIMAIA mission: provision of proton beams with controlled properties for multidisciplinary user-driven applications

Research opportunities will arise at every step of the process above:

Scaling of proton beam properties Advanced mechanisms Techniques for beam collimation Efficiency enhancement Applications Novel dosimetry

FLAIM flagship experiment (2023)

FLAIM : Flash and ultrahigh dose-rate radiobiology with Laser Accelerated lons for Medical research

Scientific Impact

- ✓ innovative regimes for ion acceleration (protons and C-ions) with a PW-class laser at ELIMAIA at high rep. rate
- ✓ high beam quality through dedicated ion beam transport at ELIMAIA/ELIMED for irradiation of biological samples
- ✓ novel clinical dosimetry through dedicated on-line, cutting-edge diagnostics available at ELIMAIA/ELIMED
- in-vitro cell (cancer and healthy tissues) and in-vivo (zebra fish) irradiation with proton/carbon beams using ultrahigh dose-rate and flash radiotherapy approaches (10⁹ Gy/s)

Dedicated workshop tomorrow afternoon

L3 HAPLS laser status

High repetition rate Advanced Petawatt Laser System

J. Cupal, B. Rus (Dep.91)

- 1 PW 10 Hz repetition rate beamline
- Nd:glass helium-cooled DPSLL pump laser
- Ti:sapphire short-pulse chain, helium-cooled power amplifier
- World's highest peak power laser diode arrays
- High level of automation

Design performance:	1 PW / 10 Hz 30 J / <30 fs
Current performance:	0.5 PW / 0.5 Hz, 3⅓ Hz 13.3 J / 27.3 fs

Ramping to PW / 10 Hz in progress:

- 1 PW / shot-on-demand spring summer 2023
- 1 PW / 3¹/₃ Hz spring summer 2024
- 1 PW / 10 Hz spring summer 2025

Proton source: Target Normal Sheath Acceleration (TNSA)

- Widely studied since 2000 and well established
- Broad spectrum/diverging beams
- Burst duration : ~ ps at source
- Highly laminar beams (ultralow emittance)
- High brightness beams 10¹¹-10¹² protons /shot
- Surface acceleration process mostly active on proton contaminants

Proton cut-off energies scale with laser intensity/energy $E_{max} \approx 90$ MeV for ps PW (PHELIX) 60 MeV for fs PW (DRACO)

Zimmer, PRE 104 (2021) 045210

TNSA performance on ELIMAIA

Stability tests: rep. rate series @10²¹ W/cm²

30

25

20 -

15

E_{pMAX}(MeV)

500 consecutive shots (5x 100 shots @0.5 Hz) Data acquisition and analysis also @0.5 Hz

Excellent pointing stability at high power (<3 µmrad, 1µm on target)

MeV

Ramping up laser power and proton energies

Beyond TNSA: advanced mechanisms for enhanced beam provision

Commissioning of plasma mirror chamber will open to investigation new acceleration mechanisms

- Proton acceleration at grazing/parallel incidence
- Radiation Pressure Acceleration from ultrathin foils
- Relativistic transparency regimes
- Hole Boring processes in low density media
- Synchronized/slow light acceleration

.....

New acceleration processes through high-field plasmonics

Mechanism also works at grazing incidence

J. Sarma et al, New J Phys, 24, 073023 (2022)

SPW excitation previously studied at larger incidence angles and using pre-imposed periodic structures

(b)

25

- Strong dependence on grazing angle
- For parallel case, significant dependence on lateral shift

Experimental verification forthcoming (GEMINI, Jan 2022)

Volumetric acceleration from ultrathin foils

- Strong dependence on polarization, onset of Light Sail acceleration
- Particularly interesting for bulk Carbon acceleration
- Existence of an intensity dependence, optimum target thickness
- Opportunities for pure carbon beam delivery

ELIMED ion beam transport

F.Schillaci *et al*, JINST, **11**, P08022 (2016)

Unavoidable losses associated to beam divergence

Target-based approach for pre-collimation

S. Kar et al., Nature Communications, 7, 10792 (2016)

From single shot device to high-rep operation

Applications : radiobiology at ultra-high dose rate

Ultrashort ion bursts : ps at source, 1-10 ns at irradiation site Dose: 0.1 Gy – Gy

Experimental arrangements for high-dose rate studies

QUEEN'S

ERSITY

h

Compact set-up for single shot irradiations (VULCAN, GEMINI, CLF) **BELFAS** Kapton AIR 1 T window VACUUM Cell Magnet assembly Target Laser 12 5 125 50 5000 35 +-3.4 cell position MeV 45 40 30 30 3000 9.7% 2000 ເດດດ 35 40 45 30 10 15 40 45 50 20 25 35 -30 Energy [MeV] Energy on the cells [MeV]

Experiments in a reconfigurable user facility

Chaudhary P, et al, (2021). *Front. Phys.* **9**:624963.

Magnetic beamline for in-vivo irradiations (HZDR, Germany)

F. Kroll et al, Nature Phys., 18, 316 (2022)

ELIMAIA offer new opportunities for these studies :

- open user facility
- permanent irradiation set-up
- high-rep, multi-pulse, etc...
- In-vitro, in-vivo

Conclusions

ELIMAIA beamline:

Primary mission: provision of ion beams to users for multidisciplinary applications

Advanced Commissioning (ongoing)

- Proton source 25 MeV, stable production
- Source optimization (ongoing)
- Demonstration of transport User assisted commissioning (2023)

Flagship experiment

FLAIM (planning stage – workshop tomorrow)

User experiments:

Research opportunities in ion acceleration: scaling of acceleration, advanced mechanisms

- \circ Novel solutions for transport optimization
- \circ Broad range of opportunities in radiobiology
- (+ applications in material studies, radiochemistry, cultural heritage, HEDP,)

IMPULSE