

Commissioning Progress and Access Status

ELI ALPS Research Institute

Katalin Varjú ELI ALPS, Science Director

ELI ERIC Users Workshop Szeged (hybrid) 3 – 4 November, 2022

Portfolio of research opportunities Capacity, Capability and Uniqueness

meli

Virtual tour of ELI ALPS I. building

Virtual tour of ELI ALPS II. laboratories

/ eli

Virtual tour of ELI ALPS III. people

Open positions in

Laser science, AMO, condensed matter and plasma physics

@ junior, postdoc and technician level

Laser parameters & status

user ready by Q2 2023 by Q4 2023 •eli

	Parameters	Status	Date for user access
HR1	100 kHz, 30 fs, 1.8 mJ 100 kHz, <7 fs, 1 mJ	CEP stability unresolved, will be treated Q2 2023	Available to users
HR2	100 kHz, <6 fs, 5 mJ, CEP	Under development (current status 76 fs, 6.3 mJ or 9 fs, 3.5 mJ)	by Q1 2023
HR Alignment	1 kHz, 7 fs, 1 mJ	Under procurement	by Q3 2023
MIR	100 kHz, <42 fs, 130 لاµ, CEP 100 kHz, <20 fs, 70 µµ, CEP	recommissioned in new lab	Available to users
MIR-HE	3.2um, 1 kHz, CEP: <50 fs, 20 mJ or <25fs, 10 mJ 1.6um, 1 kHz, CEP: <100 fs, 12 mJ	Under development	by Q2 2023
SYLOS 2	1 kHz, <7.5 fs, >30 mJ, CEP	flat top profile > 30 mJ; Gaussian beam profile >24 mJ	Available to users
SYLOS 3	1 kHz, <8 fs, >120 mJ, CEP	Under development	by Q4 2023
SYLOS Alignment	10 Hz, <12 fs, >40 mJ	postcompressed pulses on target: >10 mJ, <4.5 fs	Available to users
SYLOS Alignment 2	10 Hz, 15 fs, 40 mJ, 850 nm	Under procurement	by Q4 2023
HF PW	10 Hz, <17 fs, 34 J 2.5 Hz, 25 fs, ~7-10 J	Under development (current status 10 Hz, 24 fs, 10 J)	by 2025 by Q2 2023
THz Pump	1 kHz, 100 fs, 4 mJ 50 Hz, <0.5 ps, 0.5 J, synch	pump-probe schemes in development	Available to users

Secondary source parameters & status

user ready					
by Q2 2023 by Q4 2023	Secondary Source	Specs Achieved	Status	Date for user access	
	GHHG HR1 & 2 GAS (LTA4)	>270 pJ @ generation, >50 pJ on target; 166 as; @100 kHz; 30-70 eV	train of atto pulses, CEP of driver not resolved	Available to users with HR1 Q2 2023 (HR2)	
	GHHG HR1 & 2 CONDENSED (LTA3)	current status 170 pJ @ generation XUV monochromator installed	train of atto pulses XUV mono resolution 100-400 meV	Available to users with HR1 Q2 2023 (HR2)	
	GHHG SYLOS COMPACT (LTA2)	400 nJ @ generation in Ar, ~1 μJ in Xe	2-photon XUV process observed pol gating in development setting up Flagship proj	Available to users Q4 2022	
	GHHG SYLOS LONG (LTA1)	400 nJ @ generation in Ar, ~1 μJ in Xe	in commissioning (XUV flux studies)	by Q1 2023	
	SHHG SYLOS (MTA)		Under construction on site	by Q3 2023	
	SHHG PW (HTA)		Under construction on site	by Q3 2023	
	MIR HE GEN ATTO		Under development	by Q3 2023	
	NLTSF / THz SPECTROSCOPY (THz)	energy: 10 µJ at source, 5 µJ at sample useful spectral content: 0.15-2 THz peak THz field at sample: ≥450 kV/cm	recommissioned in new lab, pump-probe schemes THz – THz – white light – green	Available to users	
	THz HIGH ENERGY (THz)	energy ~ 1 mJ, @50 Hz useful spectral content 0,15 – 1,5 THz	pump-probe schemes in development	Available to users	
	ELECTRON- SYLOS (MTA)		Under construction on site	by Q3 2023	
	ELECTRON PW (HTA)		Under development	by Q4 2023	

meli

Experimental stations implementation status

user ready			
by Q2 2023	Experimental Stations	Status	Date for user access
by Q4 2023	REACTION MICROSCOPE / COLTRIMS	installed on HR GHHG	available to users
	VMI SPECTROMETER ENDSTATION	tested on HR GHHG, adaptation to MIR ongoing	available to users
	CONDENSED MATTER STATION (NANOESCA)	internal VUV source, CEP stable oscillator, HR GHHG source	available to users
	MAGNETIC BOTTLE e SPECTROMETER (IMPULSE) – collab FORTH	under development	Q1 2024
	NANOSCIENCE & NANOFABRICATION	electron beam lito + focused ion beam	available to users
	NANOSCIENCE: time resolved ELLIPSOMETRY	under internal development	Q3 2023
	NANOSCIENCE: Scanning Nearfield Microscope	under procurement	Q3 2023
	LIDT and LASER MACHINING test station	under internal development	Q2 2023
	CHEMICAL REACTION CONTROL STATIONS (GPRC; TAS)	transient absorption setup for condensed samples on HR, gas phase reaction control on SYLOS	available to users
	LIQUID JET ENDSTATION – collab LMU	commissioning tests ongoing	Q2 2023
	MULTIDIMENSIONAL SPECTROSCOPY (FEMTOBIOLOGY) – collab BRC	under development	Q2 2023
	RADIOBIOLOGY / BIOMEDICAL LAB	standard biology toolset zebrafish embryo test model for radiobio studies Radiobiology toolset (irradiator, dosimetry setup)	available to users
	eSYLOS IRRADIATION FACILITY (for biol, chem, phys samples, dosimetry)	under internal development	Q3 2023
	eSYLOS X-RAY GENERATOR	under internal development	Q3 2023
	HIGH FIELD PHYSICS STATION (PW)	under internal development	Q3 2023
	THz PUMP – XUV PROBE	under internal development	Q2 2023
	CHEMICAL PREP LAB	standard chemistry toolset	available to users

meli

ELI ERIC facilities recent advances – annual report

ELI ALPS Attosecond Light Pulse Source

> The primary mission of the ELI ALPS research facility in Szeged, Hungary is to provide laser and secondary light and particle sources in the form of ultrashort bursts with high repetition rates. Energetic coherent light pulses of few optical cycles are available from the terahertz (1012 Hz) to the X-ray (1018 - 1019 Hz) frequency range. ELI ALPS will be dedicated to study extremely fast dynamics by taking snapshots in the attosecond scale of the electron dynamics in atoms, molecules, plasmas and solids. The parallel existence of these secondary sources and state of the art lasers including PW-class lasers within the same facility, offers unique time-resolved investigation possibilities for both nonrelativistic and relativistic interaction of light with all the four phases of matter. ELI ALPS will also pursue research with ultrahigh intensity lasers.

> The constructed buildings house the laser equipment, specialised engineering design and cutting-edge secondary sources, target areas, laser preparation and implementation of the latest technology for vibration other special laboratories, including 4.000m² of clean levels, thermal stability, relative humidity, clean rooms. It also provides sufficient administration space room facilities and radiation protection conditions. for approximately 250 researchers and support staff. The ELI-ALPS is approaching the end of the There are seminar, meeting and conference rooms. construction phase for the main priority being the There are also electrical, mechanical and optical installation and commissioning of the remaining workshops. These state-of-the-art facilities require research technology

the development of four beamlines and commissioning development in Vilnius.

The SYLOS-driven Long Gas High-Harmonic Generation (GHHG) beamline is being commissioned, using 20 m The Medium Shielded Target Area (MTA) houses the focusing in combination with a single gas cell of variable eSYLOS and SYLOS Surface HHG Plasma beamlines. length (36-70 cm) is fully assembled. The SYLOS-driven The beam-transport system from SYLOS2, SEA and Compact GHHG beamline is fully assembled.

The SYLOS2 (1kHz/30mJ/7fs) and SYLOS Alignment The XUV pulses are generated and characterised with (10Hz/ 40mJ/ 12fs) lasers are operational and serving respect to pulse energy (µJ level), spatial beam profile, photon spectrum (up to 150 eV energies) and temporal user campaigns including the Hungarian Transmutation properties. An end-station, hosting back-focusing Project. Upgrades were implemented to improve the multilayer mirrors for wavelength selection and beam quality for the beamlines, such as spatial filtering focusing in combination with a bi-polar Time- of-Flight and a new beam expander. Post-compression was spectrometer, is commissioned. A commissioning user achieved down to 4.4 fs with more than 10 mJ output campaign was successfully carried out in November energy. The SYLOS3 laser (1kHz/ 120mJ/ 8fs) is in 2021, during which nonlinear two-photon atomic processes were observed using the generated XUV

SYLOS3 to MTA are under construction

22

2021-

ELI ALPS technological highlights - developments initiated by user requirements

 Postcompression of laser pulses @ high energies Process is scalable, preparing to apply to all lasers. Increased peak power. Improved temporal resolution

MIR (5.4 cycles to 1.9 cycles) SEA (4.13 cycles to 1.2 cycles) SYLOS – ongoing

ei

- Developing secondary sources (attosecond beamlines) Improving the flux (reached nonlinear regime) Improving temporal characteristics, incl. Polarization gating (towards single attopulse generation)
- 3. Increasing the versatility of pump-probe schemes on multiple lasers (THz, HR) 2nd harmonic generation, 4th harmonic generation, white-light generation

All the developments have been requested by users, to be able to do next generation experiments, to reach parameters not accessible elsewhere.

/ eli

@10 kHz, active feedback loop, 82 mrad RMS 95% of points within [-150, +150]

0.9 % power stability

2.4 % pulse-to-pulse E stability

Spectral broadening in cystal pairs (YAG & Si, BaF2 & Si)

Status of MIR laser

user ready

Available diagnostics:

Spectrometer 1.5-5 um (Mozza, Fastlite)
Scanning FROG all reflective, down to sub-2 cycles @ 3μm
TIPTOE, down to single cycle @ UV to MIR.
Single-shot CEP detection (Fringeezz, Fastlite 10 kHz; TOUCAN, ELI-ALPS, 100 kHz)
Beam profilers (IRC912 MIR CCD camera, Ophir Nanoscan, Pyroview DIAS Infrared Bolometric camera)
Wavefront sensor (SID4-DWIR, Phasics)

88 μJ, (17.5 fs) 1.9 o.c.@ 3 μm

	Parameters	Status	Operation due date
MIR	100 kHz, <40 fs, 0.15 mJ, CEP FASTLITE 100 kHz, 17.5 fs, 88 μJ, CEP	Operational	since October 2017

11W, 110 µJ, 50 fs

MIR-HE laser - overview

ei

Configuration	Central wavelength [nm]	Pulse enegry [mJ]	Pulse duration [fs]
#1	3200	20	<50 (5 cycles)
#2	1600	12	<100 fs
#3	3200	10	<25 (2.5 cycles)

All configurations CEP stable (passive via DFG + feedback)

MIR-HE atto - overview

	Parameter	Specification MIR-HE ATTO
1.1	GHHG maximum photon energy at the interaction point driven by pulses from configuration#1 or con- figuration#3	1200eV
1.2	GHHG maximum photon energy at the interaction point driven by pulses from configuration#2	500eV
1.3	GHHG XUV/Soft X-ray photon flux at the interaction point driven by pulses from configuration#2	$\sim 10^9 ph/s/10\% BW$ @300 eV

meli

Table 2.1: Specifications of the MIR-HE ATTO.

XUV-IR Recombination/ Refocusing chamber

HR activity 100 kHz

🗰 eli

Status of HR lasers

/ eli

٠

•

fiber laser technology

postcompression<7fs

double MPC concept for

HR1: user ready

	Parameters	Status	User readiness
HR1	100 kHz, 40 fs, 1.5 mJ 100 kHz, <7 fs, 1 mJ, CEP	Operational	since Dec 2017 Aug 2021
HR2	100 kHz, <6 fs, 5 mJ, CEP	In development	by Q4 2022

Development status of HR2 laser

Frontend

 Set at moderate power of 7.2 mJ, but capable of >10 mJ (270 fs, 100 kHz, >1 kW)

Post-compression

» eli

- First post-compression (MPC-1): Long-term tested at 6.3 mJ (±0.6% for 8 hours) 76 fs (chirped, ~50 fs FTL) (capable of < 40 fs pulses)
- Second post-compression step (MPC-2): work in progress (currently 9 fs, 3.5 mJ but now only a ~ 15W sample beam is compressed for CEP tests)

To do list

- CEP: High priority
- System should be ready by March 2023.

Status of HR GHHG Gas beamline (LTA-4)

user ready

• XUV-IR pump-probe studies on gaseous targets at 100 kHz

🍿 eli

45

40

≥ 35

Clerence Cle

ectron 20

- diagnostics for the temporal, spectral and spatial characterization of the XUV pulses
- flexible reconfiguration according to user needs (target area between CH04 nd CH05)

Peng Ye *et al., J. Phys. B: At. Mol. Opt. Phys.* **53** 154004 (2020) Peng Ye *et al., Ultrafast Science* 2022, 9823783 (2022)

~166 as,

@ 100 kHz

~250 pJ generated,

~50 pJ on target

Highest flux attosecond pump-probe beamline running at 100 kHz

- 19% transmission from generation to target
- **51 pJ** APT on target (**267 pJ** at generation)

Results of HR GHHG Gas beamline (LTA-4)

user ready

meli

HR GHHG Cond beamline + XUV mono (LTA3)

Supports condensed matter endstations with XUV-IR pump-probe capabilities

ei

T. Csizmadia et al., "Spectrally tunable ultrashort monochromatized extreme-ultraviolet pulses at 100 kHz", under submission

Monochromatized XUV pulses with few femtosecond duration

Experimental stations for gas phase studies

user ready

mobile stations

VMI-ES

to obtain energy- and angle resolved information on ions and electrons resulting from the photoionization or photofragmentation of atoms, molecules or nanoparticles

mei

ReMi / Coltrims

Kinematically complete experimental study of ion and electron fragments detected in coincidence

Transient Absorption Spectrometer (TAS) setup

White light (probe beam) generation with sapphire plate Green or UVC light (pump beam, SH) generation with BBO crystals (~25-40 fs, 100 kHz) Optical chopper used at 6 kHz for Lock-in measurements and 2 kHz for measuring the spectra

System: NanoESCA end station coupled with CEP oscillator

- Photoemission Electron Microscopy (PEEM) mode: laterally resolved microscopy of the sample surface
- Imaging Photoelectron Spectroscopy mode: lateral and energy resolution

meli

- Momentum microscopy: imaging of the momentum space with energy resolution •
- Spin dependent imaging in both real and momentum space with a state-of-the-art Au/Ir(100) imaging spin filter

D. Vasilyev et al., J. Electron Spectr. Relat. Phenom. 199 (2015) 10

Status of SYLOS2 laser

user ready

meli

0.3

Frequency [fs⁻¹]

0.4

-25 0 25

Time [fs]

1000

Wavelength (nm)

	Parameters	Status	User readiness
SYLOS 2	1 kHz, <6.5 fs, 30 mJ, CEP	Operational	since May 2019
SYLOS alignment	10 Hz, <12 fs, >40 mJ	Operational	since Jan 2019

Thin plate compression of the SEA laser

Sz. Toth, et al., 3 TW single-cycle pulses enabled by thin plate postcompression, Optics Letters (submitted, 2022)

ei

Add comments to retrieval

Measurement device:

- D-cycle NIR (Sphere U. P.)
- 500 1250 nm 🥒

sphere

user ready

Compressed pulse:

- FTL: 3.52 fs
- Measured: 3.79 fs

1.4 optical cycle 12 mJ energy

~ single cycle laser pulses achieved at >10mJ pulse energy level.

Status of SYLOS2 laser Spatial filtering

meli

Output parameters:

- Transmission: >80%
- Energy: >24mJ Gaussian beam

profile

Status of SYLOS2 laser Post-compression

Very similar optical setup as it was used for the Sylos Experimental Alignment post-comperssion

🖤 eli

Measured (a) and retrieved (b) d-scan traces, measured (blue) and retrieved (grey) fundamental spectra with the retrieved spectral phase (c), and finally the FTL (dashed grey) and retrieved (solid blue) pulse temporal profiles (d).

Compressed pulse:

- Pulse duration: 4.75 fs
- Energy: <u>**16 mJ**</u> with 0.6% RMS stability

Under further investigation!

Status of SYLO3 laser DL3 Factory Acceptance Test

"DL3 Partial FAT: Demonstration of the operational capability of pre-amplifier and pump laser of SYLOS 3 laser system"

•eli

Measured typical beam profile of PPL

Measured typical pulse duration of PPL

Measured output spectrum of the front-end

Calculated transform-limited pulse duration

Output energy stability of the front-end over 60 min

SYLOS GHHG Compact in commissioning

meli

SYLOS GHHG Compact in commissioning by users

Polarization gating

ei

(arb.units) 250 0.8 200 Spatial coordinate 0.6 150 No polarization gating (arb.units) 500 700 0.4 100 0.2 50 coordinate 15 17 19 21 23 25 27 29 31 33 150 Harmonic order 100 Spatial 50 19 21 23 25 27 29 31 33 17 15 Harmonic order 1.0PG On Signal (arb.units) PG Off 0.8 0.6 0.4 0. 0 Harmonic order

T 1.0

- 0.8

0.6

0.4

0.2

"photon energies of this work are the highest of a harmonic comb, that have induced so far a hybrid direct and sequential two photon ionization process"

SYLOS GHHG Long in commissioning user ready by Q1 2023

Appi, et al., Generation of high-flux high-order harmonics in long beamlines (in preparation)

meli

Featuring:

Pulse contrast cleaning using liquid jet plasma mirror.

Interferometric stabilized high-speed rotating target for kHz expt.

Prepulse to tune preplasma on target.

XUV

INDUSTRIE

loc

Deformable mirror + wave-front sensor+focal spot diag. + feedback loop for small spot size on target.

Both CWE and ROM harmonics are in the same setup.

Additional diag.:electron spectrometer, pulse characterization

SYLOS SHHG in development

Driven Relativistic Surface Plasma, Sci Rep 12, 13668 (2022)

SYLOS electron acceleration in development

Developed by:

user ready by Q3 2023

Zs. Lécz et al., Substantial enhancement of betatron radiation in cluster targets, Phys. Rev. E 102, (2020) 053205

D. Papp et al., Highly efficient few-cycle laser wakefield electron accelerator, Plasma Phys. Control. Fusion 63 (2021) 065019

T. L. Audet et al., *Ultrashort, MeV-scale laser-plasma positron source for positron annihilation lifetime spectroscopy*, Phys. Rev. Accel. Beams **24**, (2021) 073402

R. Polanek et al., 1 kHz laser accelerated electron beam feasible for radiotherapy uses: A PIC–Monte Carlo based study, Nuclear Inst. and Methods in Physics Research, A 987 (2021) 164841

D. Papp et al., Laser Wakefield Photoneutron Generation with Few-Cycle High Repetition Rate Laser Systems, Photonics (in press 2022)

Zs. Lécz et al., Acceleration of GeV-class electron bunches by sub-Joule few-cycle laser pulses (Submitted 2022)

Gas phase reaction-control station Time-resolved studies

Vacuum Wavelength/hm

III ei

user ready mobile station

Photodissociation/Coulomb explosion experiments in gas phase driven by SYLOS laser (891 nm, 1 kHz, 8 fs, 300 µJ/pulse)

Excitation: IR/XUV/attosecond/terahertz (double pump) **Probe**: Time-resolved Fluorescence spectra **Spectral Resolution**: 0.06 cm⁻¹

(50000 cm⁻¹-400cm⁻¹)

Time resolution: 2.5 ns **Pressure**: 1E-4 Torr, jetcooled

/eli

Output of TWIN amplifier

Current status:

TWIN 1 amplifier: 14.3 J @ 10 Hz •

meli

TWIN 2 amplifier: inactive ${}^{\bullet}$

TWIN 1 energy

- 14.3 J average ۲
- 0.64% RMS
- 6.4% PTP ullet

measured for 1 minute with Gentec QE95LP

Streams in coolant flow in TWIN 1 laser head

Diagnostics after compressor

Compression in diagnostic bench

meli

- Center of beam measured
- Single-shot D-scan (D-Shot R, 700-900 nm)
- Compressor not aligned perfectly for diagnostic bench
- FTL only 27.4 fs
- Wizzler measurement of AT last week: 22-24 fs

Amplitude

Figure 3.2: SHG d-shot retrieval results and resulting pulse in the spectral and time domain. (Top-left) Measured, calibrated d-shot trace. (Top-right) Retrieved d-shot trace. (Bottom-Left) Red line: Measured linear spectrum. Green line: Retrieved linear spectrum. Blue line: Retrieved spectral phase. Black line: 4th order polynomial fit of the spectral phase. (Bottom-right) Dashed green: Temporal intensity profile of the transform limited pulse. Light Green: Temporal intensity profile of the measured pulse. Measurement: (2022/10/26 09:29:00)

Add comments to retrieval

PW driven high field interactions

NLTSF: equipment developments

High-Energy Terahertz (HE-THz) source

•ei

Parameters from site-acceptance test (SAT) THz pulse energy: > 1 mJ Repetition rate: 50 Hz THz waveform: single cycle Spectral range: 0.1 – 1 THz Spectral amplitude peak at 0.25 THz Synchronized short-pulse output: 0.8 µm | 100 fs | 1 mJ | 1 kHz

waveform of high-energy THz pulses measured by electro-optic sampling

user ready

PÉCSI TUDOMÁNYEGYETEM UNIVERSITY OF PÉCS

Mechanical and electrical workshops (incl rapid prototyping) Optical workshop for custom optics and coatings (incl advanced metrology)

Spiro-OMeTAD

Perovskite -

Compact TiO₂ -

FTO

Glass

500 nm

NanoFab

Auxilliary facilities

user ready

Zebrafish embryo model to investigate radiobiological effects of pulsed radiation.

RadioBiol

Contro

FIB, EBL Nanofabrication unit, optoelectronical sample preparation, nanooptics research, condensed matter analysis

ELI ERIC User Call(s) https://www.eli-laser.eu

THANK YOU FOR YOUR ATTENTION!

Contact us at https://www.eli-laser.eu The Extreme Light Infrastructure ERIC info@eli-laser.eu tel +420 266 051 109

- 1st Call runs October 2022 through March 2023
- The 2nd call will be published January 2023