Spontaneous electron-positron pair creation using the relativistic mirror Tae Moon Jeong¹⁾, Sergei V. Bulanov^{1,2)}, Rashid Shaisultanov¹⁾, Prokopis Hadjisolomou¹⁾, and Timur Zh. Esirkepov²⁾ ELI-Beamlines, ELI-ERIC, Za Radnici 835, Dolni Brezany, 25241, Czech Republic Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan The relativistically moving, subluminal, curved electron-density layer, known as relativistic flying parabolic mirror, is widely observed in laser-plasma interaction experiments and simulations. It is shown that a counterpropagating electromagnetic wave is focused by the relativistic mirror and an unprecedented field strength level can be achieved with a double Doppler-shifted frequency [1]. In this presentation, we discuss the spontaneous electron-positron (e^+e^-) pair creation (Schwinger pair creation) under a two-beam colliding scheme mediated by the relativistic curved mirror [2]. In this scheme, two laser pulses counter-propagate to the relativistic mirror [see Fig. 1(a)]. The preceding and moderate-intensity ($a_{1,0}$ << 1) laser pulse is reflected and focused by the relativistic mirror. The following high-intensity ($a_{2,0} > 1000$) laser pulse collides with the focused laser pulse to form a ultra-strong field strength [see Fig. 1(b)] and to produce e^+e^- pairs from the vacuum. Having the spatiotemporal field distribution, the spatio-temporal distribution of e^+e^- pair creation have been calculated using the Euler-Heisenberg Lagrangian formalism. The total number of e^+e^- pairs created is calculated at different $a_{1,0}$ and $a_{2,0}$ combinations, which correspond to the available laser power (10 - 100 PW) in the near future. The calculation (Table 1) predicts a considerable number ($\approx 2.2 \times 106$) of electron-positron pairs when a focused 25 PW laser pulse collides with a moderately intense (a = 0.1) and radially polarized laser pulse reflected and focused by a relativistic curved mirror with $\gamma = 100$. Figure 1. Colliding scheme between the high-intensity laser pulse and the moderate-intensity laser pulse reflected and focused by the relativistic mirror. Table 1. Summary of the total number of e^+e^- pairs created at different combinations of $a_{1,0}$ and $a_{2,0}$. In the table, γ is the Lorentz γ -factor of the relativisitic flying mirror and \mathcal{N} is the total number of e^+e^- pairs created. | γ | $a_{1,0}$ | $P_{2,0}$ (PW) $(a_{2,0})$ | $\mathcal{E}_{i, ext{max}}$ | \mathcal{N} | |-----|-----------|----------------------------|-----------------------------|--| | 50 | 0.1 | 25
(720) | 0.129 | \approx 1.9 × 10 ⁻¹ | | 50 | 0.1 | 100
(1480) | 0.186 | $\approx 1.7 \times 10^3$ | | 100 | 0.1 | 10
(460) | 0.252 | \approx 6.5 \times 10 ⁴ | | 100 | 0.1 | 25
(720) | 0.315 | \approx 2.2 × 10 ⁶ | - [1] S. V. Bulanov, T. Esirkepov, and T. Tajima, Phys. Rev. Lett. 91, 085001 (2003). - [2] T. M. Jeong, S. V. Bulanov, R. Shaisultanov, and P. Hadjisolomou, Phys. Rev A 111, 032218 (2025).