

Bonner sphere spectrometers for neutron stray radiation field characterization

UHDpulse 2nd Stakeholder Meeting 26-27 January 2023

M. Zboril¹, M. Caresana², A. Cirillo² and N.J. Roberts³

¹ Physikalisch-Technische Bundesanstalt (PTB), Germany

- ² Politecnico di Milano (PoliMi), Italy
- ³ National Physical Laboratory (NPL), United Kingdom

Motivation

- Interaction of the primary beam with matter → secondary neutrons
 → Unwanted dose to the patient must be reliably estimated and minimized
 → Basis for reliable and traceable neutron dosimetry is the neutron spectrometry
- Exp. challenges for active spectrometers/dosimeters: pulsed fields

Wide energy range – no survey instrument available with good response over the whole range

Secondary cancer risk? Cardiac implants? Dose to workers?

FLASH beam -> "FLASH neutrons"?

Metal shells (Pb, Cu) for spectrometry of high-energy neutrons

Standard sensor of thermalized neutrons: He-3 proportional counter, type SP9 (Centronic UK)

Number of events C₂ in sphere B

- Response functions of the system are needed
 - Computation via Monte Carlo methods
 - Validation in reference neutron fields

Neutron detection systems in UHDpulse

	ACTIVE	ACTIVE	ACTIVE	PASSIVE	
System	PTB BSS with U-235 f.ch.	LUPIN-BSS	LUPIN-BF ₃ REM counter	NPL Au-BSS	
Neutron detector	U-235 fission chamber read out in pulse mode	He-3 proportional counter read out in current mode	BF ₃ proportional counter read out in current mode	Neutron activation of Au-197 in gold foils	
Front-end electronics	Amp CIVIDEC Cx	LogAmp board	LogAmp board		
Digitizer	ADC in list mode	FPGA	FPGA		
Moderator spheres	PE spheres (NEMUS)	Fit into new PE spheres		PE spheres (NPL)	
Response functions	Validate in PTB neutron reference fields	Validate at NPL neutron reference fields	Known (NPL)		
Validation of method	Comparison in joint measurement campaign at PTB medical linac and FLASH beamline				

Neutron detection systems in UHDpulse

	ACTIVE	ACTIVE	ACTIVE	PASSIVE	
System	PTB BSS with U-235 f.ch.	LUPIN-BSS	LUPIN-BF ₃ REM counter	NPL Au-BSS	
Neutron detector	U-235 fission chamber read out in pulse mode	He-3 proportional counter read out in current mode	BF ₃ proportional counter read out in current mode	Neutron activation of Au-197 in gold foils	
Front-end electronics	Amp CIVIDEC Cx	LogAmp board	LogAmp board		
Digitizer	ADC in list mode	FPGA	FPGA		
Moderator spheres	PE spheres (NEMUS) Fit into new PE spheres			PE spheres (NPL)	
Response functions	Validate in PTB neutron reference fields	Validate at NPL neutron reference fields	Investigated at NPL	Known (NPL)	
Validation of method	Comparison in joint measurement campaign at PTB medical linac and FLASH beamline				

Au foil Bonner spheres

Photomultiplier Nal Source Beta detector changing key Source changing wheel with four source holders

Activation Foils

•

٠

٠

Beta efficiencies from research reactor measurements

Neutron detection systems in UHDpulse

	ACTIVE	ACTIVE	ACTIVE	PASSIVE		
System	PTB BSS with U-235 f.ch.	LUPIN-BSS	LUPIN-BF₃ REM counter	NPL Au-BSS		
Neutron detector	U-235 fission chamber read out in pulse mode	He-3 proportional counter read out in current mode	BF ₃ proportional counter read out in current mode	Neutron activation of Au-197 in gold foils		
Front-end electronics	Amp CIVIDEC Cx	LogAmp board	LogAmp board			
Digitizer	ADC in list mode	FPGA	FPGA			
Moderator spheres	PE spheres (NEMUS)	Fit into new PE spheres		PE spheres (NPL)		
Response functions	Validate in PTB neutron reference fields	Validate at NPL neutron reference fields	Investigated at NPL	Known (NPL)		
Validation of method	Comparison in joint measurement campaign at PTB medical linac and FLASH beamline					

PTB BSS NEMUS + U-235 fission chamber

- Neutron-induced fission reaction U-235(n,f), Q ≈ 200 MeV
- U-235 coated ionization chamber + shaping amplifier CIVIDEC Cx
- ADC (Model 7072 FAST ComTec) with fixed conversion time 500 ns

Typical Pulse Height Spectrum

ЛК

Effective dead time of complete system $\tau \sim 0.8$ microsec.

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

NEMUS dead time correction

Sampled neutron count

rate [cps] as a function of time

RECEIVED: December 9, 2020 REVISED: February 2, 2021 ACCEPTED: February 2, 2021 PUBLISHED: March 30, 2021

- Sampling of time-resolved data (timestamp, ADC channel)
- Dead time correction carried out every 100 samples

80000

70000

60000

 ADC 7072 (FAST ComTec), fixed conversion time 500 ns ratesVsTime chan1 file028.root

Dead time corrections for Bonner sphere measurements of secondary neutrons at a proton therapy facility

M. Dommert,^a M. Reginatto,^a M. Zbořil^a and B. Lutz^{b,*}

 ^aNeutron Radiation Department, Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig 38116, Germany
 ^bInstitute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf,

Bautzner Landstraße 400, Dresden 01328, Germany

inst

NEMUS dead time correction

Effective dead time of complete system $\tau \sim 0.8$ microsec.

NEMUS + U-235 → new response functions

Neutron detection systems in UHDpulse

	ACTIVE	ACTIVE	ACTIVE	PASSIVE	
System	PTB BSS with U-235 f.ch.	LUPIN-BSS	LUPIN-BF ₃ REM counter	NPL Au-BSS	
Neutron detector	U-235 fission chamber read out in pulse mode	He-3 proportional counter read out in current mode	BF ₃ proportional counter read out in current mode	Neutron activation of Au-197 in gold foils	
Front-end electronics	Amp CIVIDEC Cx	LogAmp board	LogAmp board		
Digitizer	ADC in list mode	FPGA	FPGA		
Moderator spheres	PE spheres (NEMUS)	Fit into new PE spheres		PE spheres (NPL)	
Response functions	Validate in PTB neutron reference fields	Validate at NPL neutron reference fields	Investigated at NPL	Known (NPL)	
Validation of method	Comparison in joint measurement campaign at PTB medical linac and FLASH beamline				

The LUPIN

Long interval, Ultra-wide dynamic, PIle-up free, Neutron rem counter)

The Setups

LUPIN BF3 REM counter	 Used for environmental dosimetry Based on a BF3 Proportional Counter Lower sensitivity Linear Response in pulsed fields up to ~ 1000 counts/burst (https://doi.org/10.1016/j.nima.2013.11.073)
LUPIN He3 Bonner Spheres Spectrometer	 Used for neutron spectrometry Based on a He3 Proportional Counter Higher sensitivity The linearity of the response was tested in this work

LUPIN electronics

Conventional Acquisition Chain for a Neutron Counter

To FPGA/

Oscilloscope

LUPIN electronics

The current signal is collected at the cathode, which is electrostatically shielded with an aluminium cylinder to avoid noise pick up

> A fixed current is provided to the LogAmp to avoid negative saturation in absence of signal

3He counter/

Shield

> The high-speed LogAmp LOG114 works over a dynamic range of 8 decades and can withstand the intense currents generated in pulsed fields

[M. Caresana et al., NIM A 712 (2013) 15]

LogOut

 $V_{LogOut}(t)$

Cable Drive

Log Amp

POLITECNICO LUPIN: counts detection and n/γ discrimination

Current from y events

y Signal Derivative

Calibration

Validation of the response functions in the monoenergetic neutron fields at NPL

REM Counter Response

Bonner Sphere Spectrometer Responses

Medical linac @ PTB

25 MV, 400 MU/min. (PRF 199 Hz) 8 MV, 400 MU/min. (PRF 156 Hz)

Monitor <mark>3</mark> 2 **PMMA** PTB BSS U-235 PoliMi PTB BSS LUPIN-BF₃ U-235 PoliMi LUPIN-BSS NPL BSS Au-foil activation

NPL: Au foil analysis

Measured activities at NPL and evaluated saturated activities per MU for each foil

NPL: Au foil unfolded spectra

 Unfolded using both measured a priori spectra and a calculation from EURADOS WG6 unfolding comparison exercise (also for a 25 MV linac)

NPL: Au foil dose and fluence

- Integrating spectrum gives neutron fluence
- Folding spectrum with dose conversion coefficients gives neutron dose per MU

Position	Dose per MU (μSv)			Flu	ience (cm ⁻² l	MU ⁻¹)
	Measured a priori	Calculated a priori	Difference	Measured a priori	Calculated a priori	Difference
1	21.76	22.35	2.7%	1.37E+05	1.45E+05	5.4%
2	11.61	11.57	-0.4%	8.40E+04	8.93E+04	6.3%
3	5.69	5.40	-5.2%	5.95E+04	5.50E+04	-7.5%
4	3.81	3.65	-4.2%	4.63E+04	4.30E+04	-6.9%

PTB: Unfolded spectra

PoliMi: Irradiation at PTB Medical Linac

PoliMi: Resulting Spectra and Quantities

Integral Quantities					
	Fluence [cm ⁻² MU ⁻¹]	H*(10) [nSv MU⁻¹]			
1.6 m	882	91			
4 m	357	28			

Comparison NPL-PTB-PoliMi

Pos.	Beam settings	[x, y, z] / cm	NPL Fluence	NPL Dose	PTB Fluence	PTB Dose	PoliMi Fluence	PoliMi Dose	
1	25 MV, ISO 10x10	[40, 0, 0]	1.45E+05	22.35	1.14E+05	20.57			
2	25 MV, ISO 10x10	[0, 160, 0]	8.93E+04	11.57	7.62E+04	11.75	Neu [cm ⁻	tron fluen ² MU ⁻¹]	се
3	25 MV, ISO 10x10	[168, 243, 0] 3.0 m from ISO	5.50E+04	5.40	4.73E+04	5.57	Neu	tron dose	
4	25 MV, ISO 10x10	[321, 243, 0] 3.9 m from ISO	4.30E+04	3.65	3.80E+04	3.91	<i>H</i> *(1	0) [µSv MI	U ⁻¹]
5	25 MV, ISO 10x10	[223, 324, 0] 3.9 m from ISO			3.94E+04	3.91			
6	8 MV, "closed" 0.5x0.5	[223, 324, 0] 3.9 m from ISO			224	0.015	357	0.028	
7	8 MV, "closed" 0.5x0.5	[160, 0, 0]			447	0.046	882	0.091	

PRELIMINARY RESULTS

FLASH beamline @ PTB

PoliMi

LUPIN-BF₃

PoliMi LUPIN-BSS Pb

e 20 MeV

NPL: Measurements in FLASH linac

- Au measurements made at ± 90° and 1 m from Pb disc at maximum slit and pulse widths
- Only 5" and 6" spheres used

Expected dose for SSD70-00: 11 Gy/pulse

NPL: Au foil dose and fluence

- Used foil results to scale calculated spectrum from Andrea Cirillo/PoliMi
- Integrating spectrum gives neutron fluence
- Folding spectrum with dose conversion coefficients gives neutron dose per linac pulse

Expected dose for SSD70-00: 11 Gy/pulse

Dose per pulse (µSv)	Fluence (cm ⁻² pulse ⁻¹)
12.14	5.31E+04

Time averaged dose rate = $219 \text{ mSv } \text{h}^{-1}$

cf. Medical linac: Pos 1 = 397 mSv h^{-1} , $Pos 2 = 209 \text{ mSy } h^{-1}$

> PRELIMINARY RESULTS! 33

"Minimal FLASH" ... energy slits 0.5, pulse width 84 % Charge in 1 pulse ~ 45 nC (beam monitor) Exp. dose for SSD70-00: ~2 Gy per pulse Neutrons measured at 2.8 m from Pb target ratesVsTime_chan0_fileUHDpulse_6p2_KW45_203.root

ratesVsTime_chan2_fileUHDpulse_6p2_KW45_203.root

PTB: BSS in "minimal FLASH"

Meas. conditions:

"Minimal FLASH" ... energy slits 0.5, pulse width 84 % Charge in 1 pulse ~ 45 nC (beam monitor) Exp. dose for SSD70-00: ~2 Gy per pulse Neutrons measured at 2.8 m from Pb target Neutron fluence @ 2.8 m: **36.2** [cm⁻² per 1 nC of integral charge]

National Physical Laboratory

Neutron dose $H^*(10)$ @ 2.8 m: **0.0078** [μ Sv per 1 nC of integral charge]

OLITECNICO

MILANO 1863

Comparison PTB-NPL

NPL @ 1.0 m distance in maximal FLASH: Exp. dose for SSD70-00: ~11 Gy per pulse Neutron fluence 5.31E+4 cm⁻² per pulse 9000 pulses, mean charge 310.97 nC/pulse

→ <u>171 cm⁻² per 1 nC of integral charge</u>

Dose H*(10): 0.039 µSv per 1 nC of integral charge

PTB @ 2.8 m distance in minimal FLASH:
Exp. dose for SSD70-00: ~2 Gy per pulse
Neutron fluence 36 cm⁻² per 1 nC of integral charge assuming 1/r² dependence
& assuming FLASH regimes scaling via Q monitoring
→ 283 cm⁻² per 1 nC @ 1.0 m

Dose *Η**(10): <u>0.061 μSv per 1 nC @ 1.0 m</u>

PRELIMINARY RESULTS

Irradiation at PTB research accelerator

Acknowledgement

PTB 6.2 Dosimetry for Radiation Therapy and Diagnostic Radiology A. Bourgouin, R.P. Kapsch, C. Makowski, M. Schrader, A. Schüller

PTB 6.4 Neutron Radiation

A. Di Chicco, M. Dommert, E. Eggenstein, U. Giesen, T. Klages, B. Lutz, A. Lücke, R. Nolte, E. Pirovano, M. Reginatto, A. Zimbal

This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

XXX

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).

UHDoulse

