The Extreme Light Infrastructure Joint Call for Users Webinar

ELI-NP status and laser beam-time allocation

Speaker Name: Domenico DORIA

Head of Department for Laser-Driven Experiments, ELI-NP

18 July 2022

ELI-NP is Operational since 2016

- Experiment building
- Office building
- Guesthouse
- Canteen
- Access control building

Over 32.000

sqm of built

area and

270.000 cubic

meter of air to

condition

For more info: https://www.eli-np.ro/

ELI-NP Infrastructure


Largest geothermal system in Europe ~ 6 MW

Variable Energy Gamma System

Laboratories and workshops

2 x 10 PW High-Power Laser System

2 x 10 PW + 1 x 1 PW Laser Beam Transport System

9 Experimental areas

ELI-NP Research Infrastructure

Advanced studies in basic science ...

- characterization of laser-matter interaction with nuclear methods
- particle acceleration with high power lasers
- nuclear reactions in plasma
- photonuclear reactions, nuclear structure, exotic nuclei
- nuclear astrophysics and nucleosynthesis
- quantum electrodynamics (QED)

... and applications – developing technologies for:

- medical applications (X-ray imaging, radioisotopes)
- industrial applications (non-destructive studies with γ)
- material studies with positrons
- materials in high radiation fields

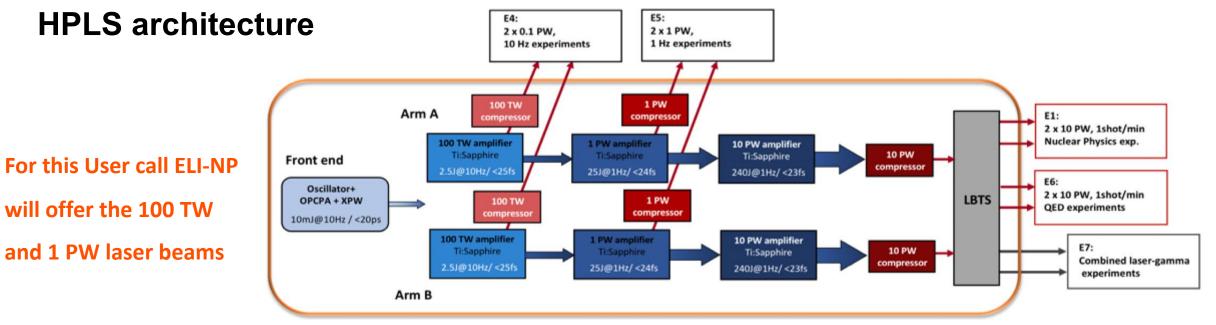
2015 Technical Design Reports assessed by ELI-NP ISAB

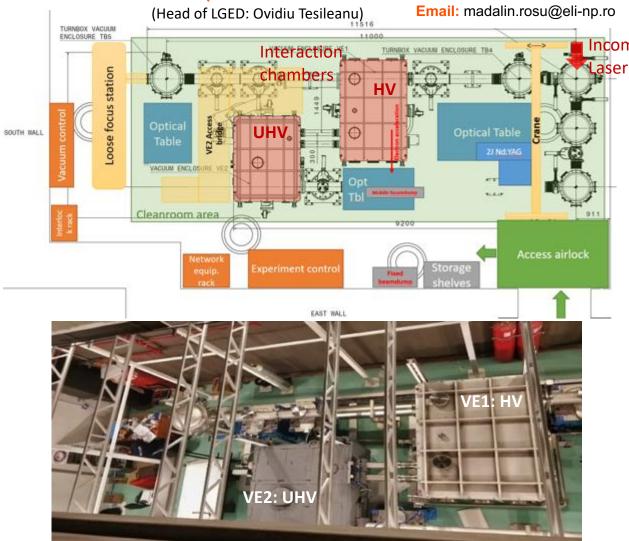
Rom. Rep. Phys. Vol. 68 (2016)

Experimental building

Experimental building eli **Dosimetry lab** Plasma diagnostics lab The local division in which the **Biophysics lab** High-Power Laser System: 11 **Mechanical & Vacuum workshop** 100TW, 1PW, 10 PW **Users room Clean rooms** E1: 10 PW @ 1/min **Optics lab** Laser driven **Spectroscopy** Laser lab **Nuclear Physics** Street in case of the local division in which the local division in the local division i & Detector lab Target lab E6: 10 PW @ 1/min E5: 1 PW @ 1 Hz **High Field QED Material Studies** E9: γ beams E4: 0.1PW@10 Hz **Photonuclear Photon-photon Reactions** int., LWFA, X-ray imaging E3: X rays Test/develop E8: γ beams instrumentation **Photonuclear ERA:** positrons and technology E7: 10 PW + 1 PW + γ/e^{-1} Reactions **Material Studies High Field QED**

High-Power Laser System


LSD department (Head of LSD: Ioan Dancus)


Measured parameters of the HPLS

Output type	100 TW	1 PW	10 PW
Pulse energy (J) *	2.5	24	242
Pulse duration (fs) **	< 25	< 24	<23
Repetition rate (Hz)	10	1	1/60
Calculated Strehl ratio from measured wavefront	> 0.9	> 0.9	> 0.9
Pointing stability (µrad RMS)	< 3.4	< 1.78	< 1.27
Pulse energy stability (rms)	< 2.6 %	< 1.8 %	< 1.8 %

*Calculated considering the transmission efficiency of temporal compressors **Measured with attenuated input energy in the compressors

CED department Contact Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu Med of LGED: Ovidiu Tesileanu) Test Person: Madalin Rosu

eli

Wes 0 Laser Ċ2 DN 25 00 О North Interaction chamber C3 Eng. M. Tataru Main teraction chamber

For more info at https://users.eli-np.ro/

100 TW Laser Experimental area (E4)

100 TW area infrastructures

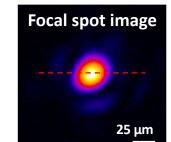
- 2 interaction chambers in stainless steel (HV – VE1 and UHV – VE2)
- 5 turning boxes
- 10 turbomolecular pumps (maglev), 1 cryopump
- Integrated control system, automatic / manual modes
- VE1 typical pump time: 60 mins; venting + opening: 45 mins
- Possibility to control and maintain the vacuum level up to 10⁻³ mbar
- Large soft-wall cleanroom equiv. ISO7

Large Optics available

- 6" flat mirrors w/ motorized mounts
- F = 1500mm off-axis parabola, AOI = 6.25°
- F = 520mm off-axis parabola, AOI = 7.5°

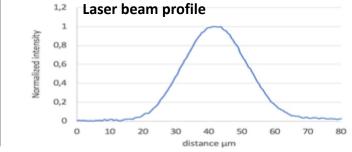
Other components for the setup

 movement stages and detectors, optical tables, optical diagnostics available on-site

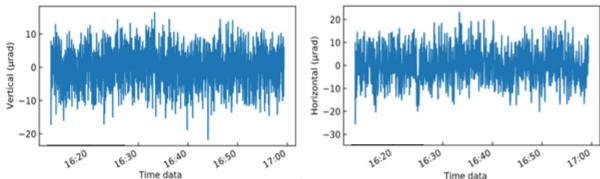

100 TW laser beam features

- Energy: < 2.5 J
- Pulse duration: < 25 fs
- Central wavelength: ~ 810 nm
- Beam diameter: ~ 54 mm
- Laser pointing fluctuation on target:
 ~ ±7 μrad
- Energy stability: <2.5%
- For this user call only experiments with gas target (gas jet or gas cell) or no target will be offered
- No BR issues foreseen

The 100 TW Laser features


Example of focus properties

- Parabolic mirror: 1.5 m focal length (F# ~28)
- Spot size diameter:
- Encircled energy



~ 70% @ 1/e²

 \sim 22±2 μ m at FWHM

• Laser pointing stability

Laser pointing stability representing the laser far-field horizontal and vertical pointing fluctuation as function of time. The r.m.s. of the fluctuations is $\pm 7 \mu rad$.

eli

Diagnostics available in the 100 TW area

List of diagnostics provided

Light detectors

- Energy meters: 10μJ-2.5mJ: Gentec QE95LP-S-MB-QED-D0, 1mJ-250J: QE8SP-B-BL-D0
- Wavefront sensor: Phasics SID4-H
- CMOS cameras: Basler acA2440-20gm, daA3840-45uc
- Photomultipliers 300-700 nm: Hamamatsu H10721-110, H10721-20
- Fast photodiodes 200-1100 nm: Thorlabs DET025A/M, DET10A2, DET08C/M, Alphalas UPD-35-UVIR-P
- Optical Spectrometers in visible and near-infrared: Ocean Optics HR4000 CG-UV and NQ512-1.7
- Optical plasma probe (as a pick-up from the main laser beam): 1w, 1/2" dia. and up to 100 mJ with pulse duration as the main laser beam, for Interferometry and Shadowgraphy.

Charged particle diagnostics

- Thomson parabola
- Stack detector
- Electron spectrometer
- ICT

Nd:YAG laser available in E4:

- Litron LPY 7864G-10
- Single Longitudinal Mode, 2nd and 3rd harmonic modules available
- Synchronization with HPLS main laser via Stanford Research Systems DG645 delay generator
- Max. 2.75 J, pulse width 12-15 ns

eli The 1 PW Laser Experimental area (E5)

1 PW area infrastructures

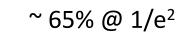
- 1 main interaction chamber (C1) in Aluminium
- 2 turning boxes + 2 large chambers (C2, C3) in stainless steel
- 9 turbomolecular pumps (1 cryo-pump on demand may be possible)
- Integrated control system, automatic / manual modes
- C1 typical pump time: 90 mins; venting + opening: 60 mins
- Vacuum level up to 10⁻⁶ mbar
- Small soft-wall cleanroom equiv. ISO7

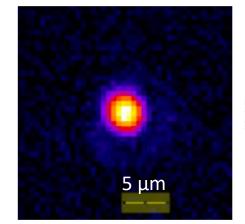
Large Optics available

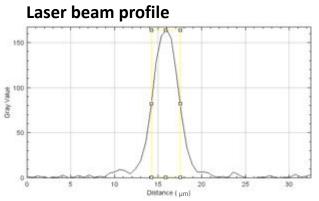
- 12"x8" rectangular flat mirrors w/ motorized mounts
- F = 5000mm off-axis parabola, AOI = 45°
- F = 707mm off-axis parabola, AOI = 22.5°

Other components for the setup

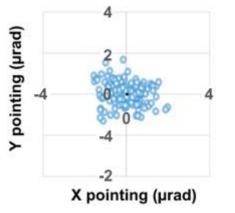
• movement stages and detectors, optical tables, optical diagnostics available on-site


1 PW laser beam features


- Energy: < 24 J
- Pulse duration: < 24 fs
- Central wavelength: ~ 810 nm
- Beam diameter: ~ 190 mm
- Laser pointing fluctuation on target: ~ ±1.5 μrad
- Energy stability: <2.5%
- For this user call only experiments with solid target and short focal will be offered, SPM can be set on request
- To avoid BR issues, the angle of incidence on target must be > 1/F# (i.e. >22.5°) w/o PM and > 1/2F# with PM.


1 PW Laser features

Example of focus properties


- Parabolic mirror: 707 mm focal length (F# ~3.7)
- Spot size diameter: ~ 3.6 \pm 2 μ m at FWHM
- Encircled energy

Laser pointing stability

Diagnostics available in the 1 PW area

List of diagnostics provided

Light detectors

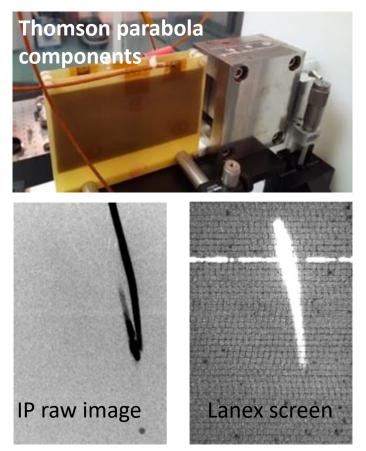
- Energy meters Gentec: a few, from µJ to 100s J level
- Wavefront sensor: Shack-Hartmann sensor $\lambda/100$ r.m.s. 32x40 px
- CMOS cameras: several Basler, 2 x ANDOR ICCD, 2 x PCO
- Fast photodiodes 200-1100 nm
- Optical Spectrometers in visible and near-infrared: Ocean Optics, ANDOR Shamrock (VIS)
- Laser Diagnostics: (FF, NF, laser energy at full power, FROG, back-reflection)
- Several Optical fiber bundles available
- Optical plasma probe/pump (as a pick-up from the main laser beam): 1w or 2w, 1" dia. up to 400 mJ with pulse duration as the main laser beam, (e.g., Interferometry, Shadowgraphy)
- Streak camera VIS (1 ps temporal resolution)

Charged particle diagnostics

- Thomson parabola
- Stack detector
- Electron spectrometer
- ICT
- Fast Oscilloscopes

Other tools

- Internal Injection Alignment Laser: CW 632-800nm, 110mm dia.
- Linear/Circular Polarization: large Mica waveplates
- 5X –40X objectives alignment system,
- Alignment system: 1µm spatial resolution motion
- Deformable Mirror



Ion Energy spectra resolution

Key parameters

- Modus operandi : off-line or on-line
- Energy and ions vs flux discrimination, small solid angle resolution
- (H⁺<100 MeV, C⁶⁺<50 MeV/n, 3% res. @ 60 MeV p)
- High voltage for electrostatic deflector (≤ 20 kV)
- Permanent dipole magnet (~1 T)
- Dipole dimensions: 1 cm gap, 5-10cm length
- Electric plates: 1 cm gap, 10-15 cm length
- Image Plate (16 positions) and/or Scintillator type Lanex
- 2 TP units are available

Thomson parabola

Lanex readout system

Proton Energy spectrum resolution

Key parameters

- Modus operandi : off-line
- Proton energy (and somewhat ions) vs flux discrimination, angular distribution resolution (H⁺<100 MeV, typically a few MeV energy res.)
- Stack of detectors (RCF, CR39, IP)
- Stack dimensions: 25x25 mm² or 50x50 mm²
- A matrix of stacks is available in a shot cycle.
- Sensitivity: Single particle sensitivity with CR39 and IP, and minimum measurable dose of ~cGy with RCF)
- A few matrices are available to help replacement during shot cycles

Stack detector

Electron Spectrometer

Electron Energy spectrum resolution

Key parameters

- Modus operandi : on-line (or off-line)
- electron flux vs energy discrimination, small angle resolution
- (e⁻ energy of 100s MeV, i.e. res. 5% @ 300 MeV)
- Permanent dipole magnet (~0.7 T)
- Dipole dimensions: 3 cm gap, 16cm length
- Scintillator type Lanex or Image Plate
- 1 magnet available for such energies, other small dipoles are available for 10s MeV energy resolution

Laboratory support

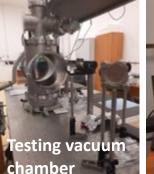
Laboratory available

Target Laboratory Optics Laboratory Laser Experiments Diagnostics Laboratory Biophysics and Biomedical Applications Dosimetry laboratory Mechanical and Electrical workshop

Target Laboratory (V. Leca)

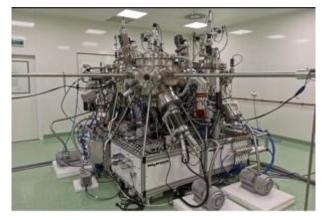
A target laboratory support for fabrication and characterisation of solid targets

Bio Laboratory (P. Vasos)



DS) Laser Experiments Diagnostics Laboratory (V. Nastasa)

A laboratory support for testing and setting up diagnostics, and processing/analyzing detectors/films (e.g., CR39 etching)



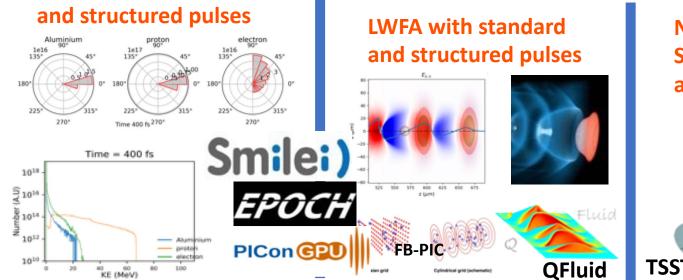
ELI-NP Target Laboratory support infrastructure (V. Leca)

Target Laboratoy support

Capabilities:	Tools:
Fabrication of (ultra)thin/thick films (free- standing or supported)	RF/DC sputter deposition, e-beam evaporation, spin-coating, electro-chemical synthesis.
Micro/nano-structuring (gratings, nanoparticles, nano-wires, nano-pillars, low density (porous) materials	Electron-Beam Lithography, photolithography, Reactive Ion Etching, Ar- ion milling, chemical methods
Characterization (Surface characterization, elemental composition, morphology and topography, roughness, interface analysis)	X-ray diffraction, Atomic Force Microscopy, Scanning Electron Microscopy with Energy- Dispersive X-Ray Spectroscopy and Electron Backscatter Diffraction, optical profilometry and microscopy
Surface treatments	Thermal treatments, polishing, surface reconditioning, plasma surface cleaning
Micromechanical and micro assembly	Wafers cutting, targets frames, micromachining

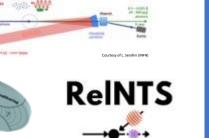
0.1 and 1 PW theory and simulation support (P. Tomassini, A. Berceanu)

Currently available computational resources include


- 1x128CPU Xeon 8358, 1Tb RAM
- 2x48CPU AMD Ryzen 3960X, 250Gb RAM
- 2x24CPU Xeon 8268, 1.5TB RAM
- 8x16CPU AMD Rome 7282, 256GB
- 2xA100 GPU, 160Gb, Nvlink

Laser solid with standard

- 16xV100 GPU SXM3, 512GB, Nvlink
- 16x10TB SATA, HDD


Available codes include

- EPOCH 2D (laser-solid, LWFA)
- Smilei 2D (laser-solid, LWFA)*
- PIConGPU (laser-solid, LWFA)*
- FB-PIC** quasi-3D (laser-solid with normal incidence, LWFA)
- Qfluid 2D cyl (LWFA)
- TSST (Nonlinear Thomson backscattering)
- ReINTS (Nonlinear Thomson Scattering at arbitrary angles and with structured pulses)

Nonlinear Thomson Scattering with standard and structured pulses

Thomson backscattering X ray source

Typical computational time

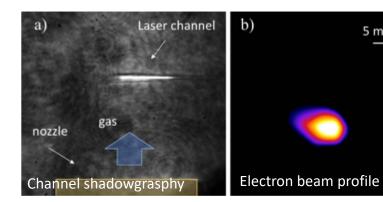
*2-3 days of computational time for a standard TNSA simulation with 15nm of resolution

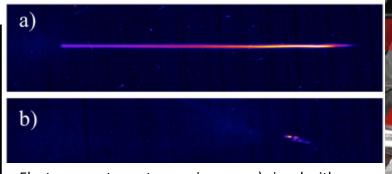
**4-6h of computational time for a quasi-3D simulation of LWFA in the bubble regime, 1cm of propagation

Hydrodynamical simulations

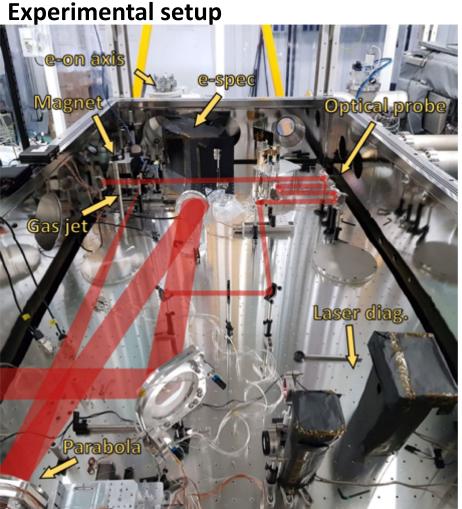
Thank you for your attention

Commissioning results



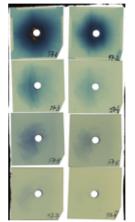

The 100 TW LWFA results

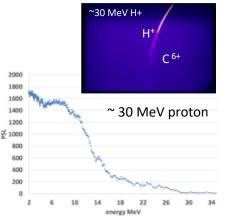
First operation in 2020 – Electron acceleration in gas targets (P.I. D. Doria)


- Gas jet target 2mm long
- SourceLab valve with controller SL-Smartshot (fast solenoid valve driver LX-03R and electromagnetic valve A2-6443)
- Pure He and mixture He +2% N₂ were used
- F=1500mm parabola
- Max. electron energy attained with Helium gas ≈220 MeV with an energy spectrum having a certain degree of monochromaticity
- Max. electron energy reached using the gas mixture \approx 320 MeV with a continuum energy spectrum, as expected when using a dopant such as N_2
- Electron diagnostics: spectrometer (up to 500 MeV) 16 cm long dipole magnet with 3 cm gap and ~0.7 T B-field, and a Lanex screen

5 mrad

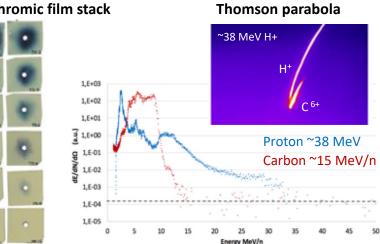
Electron spectrometer raw images: a) signal with admixture, b) with pure He.

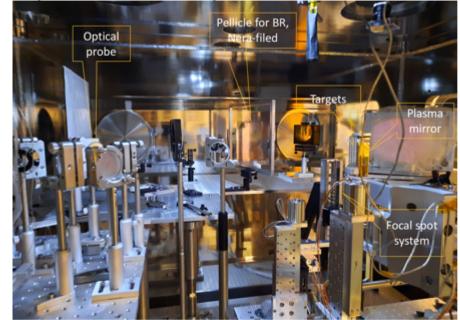

First operation in 2021 – ion acceleration from solid targets (P.I. M. Cernaianu)


- Thick and thin foils (e.g. Al, CH, DLC)
- F=710mm parabola
- Max. proton energy attained of 50 MeV with SPM
- Max. ion energy attained: carbon ion 15 MeV/n from DLC target by using a SPM.

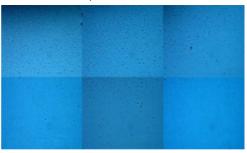
Shot parameters with plasma mirror

Laser beam power: 23.1 J, ~26 fs → 880 TW Intensity on target: ~ 4 x10²¹ W/cm² Target: 1.5 µm Al foil


Radiochromic film stack Thomson parabola data

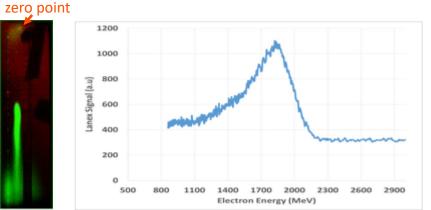

Laser beam power: 19 J, ~75 fs → 250 TW Intensity on target: ~ 1 x10²¹ W/cm² Target: 380nm DLC (built in house)

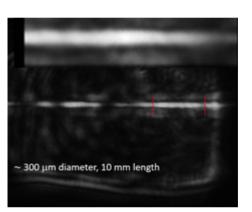
Radiochromic film stack



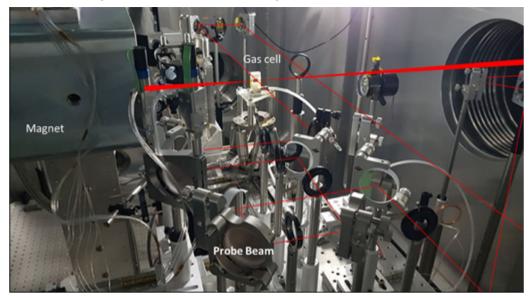
The 1 PW TNSA results

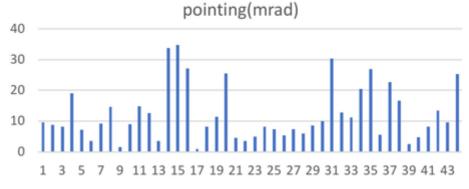
Experimental setup


Proton density ~ 10^3 protons /cm²


First operation in 2021 – Electron acceleration in gas targets (P.I. P. Ghenuche)

- Gas jet target and gas cell from 2mm to 2 cm long
- SourceLab variable metal gas cell, fix 3D printed gas cell, 2 mm metal gas jet
- Pure He and mixture He +2% N_2 were used
- F=5000mm parabola
- Max. electron energy attained with both Helium gas and admixture of ≈ 2 GeV
- Electron diagnostics: spectrometer (up to 3 GeV) 30 cm long dipole magnet with 3 cm gap and ~1 T B-field, and a Lanex screen


Electron Beam Energy Spectra for pure He



Shadowgraphy and WFS (plasma channel)

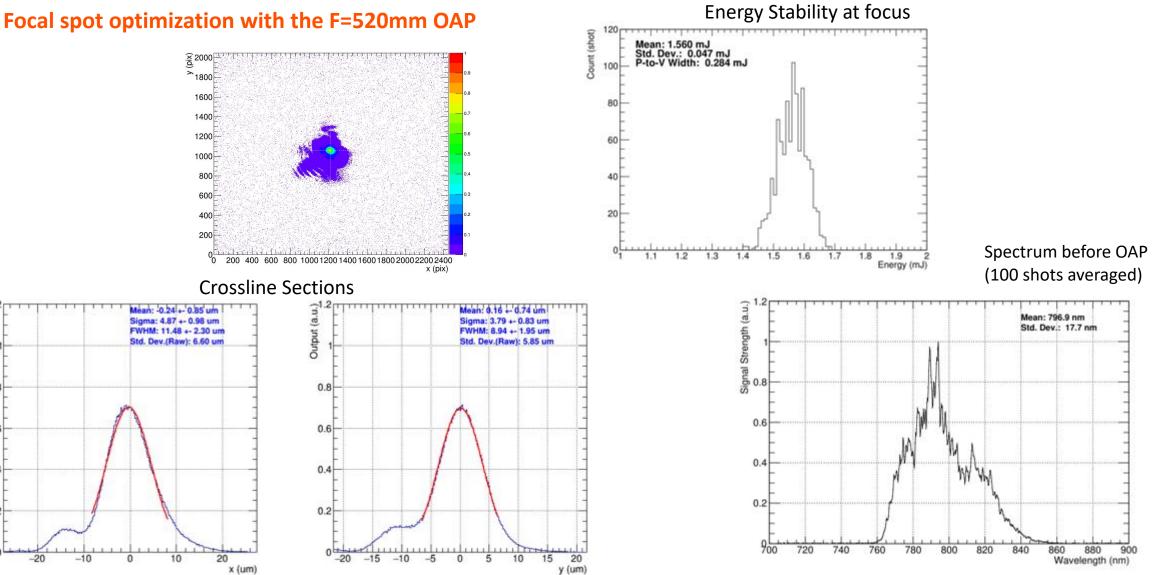
The 1 PW LWFA results

Experimental setup

Electron Beam Pointing in a typical day from gas admixture

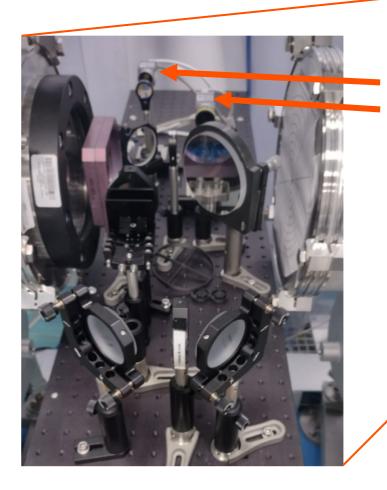
(a.u.)

Output (

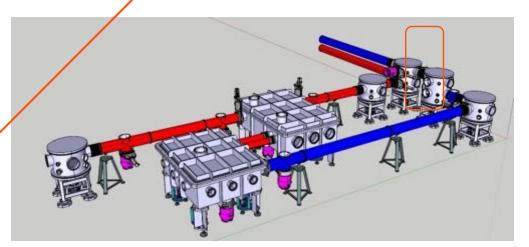

0.8

0.6

0.4

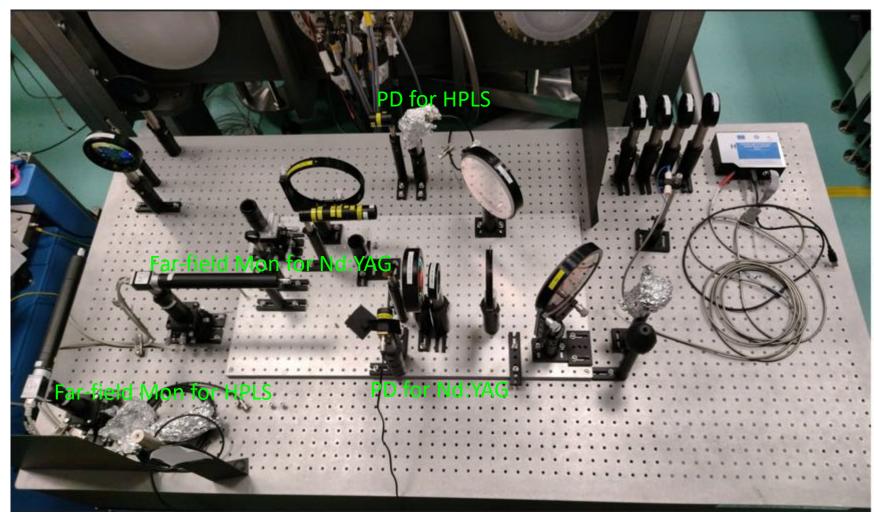

0.2

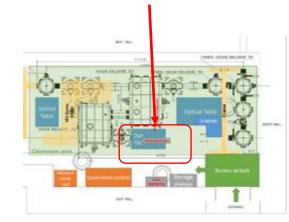
The 100 TW short focal


Laser diagnostics for daily alignment

The 100 TW alignment systems

The diagnostics bench is located after the first turning box in the area





The 100 TW alignment systems

Pulse diagnostics for the experiment

Currently located near VE1

CMOS cameras for far-field mon.

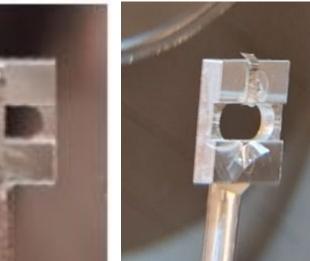
Fast photo-diodes


Pulse duration measurements can

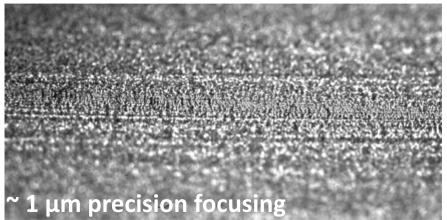
be performed in E4, on demand

Target alignment

Many targets loaded for a day of shooting



The 1 PW alignment systems


Target Al foils on holder

Before shot: intact

After shot: exploded

Target surface aligned before the shot: central region is in focus

