The Extreme Light Infrastructure Joint Call for Users Webinar

The ELI ALPS Research Institute

Dimitris Charalambidis

Chief Scientific Advisor, ELI-ALPS

18 July 2022

The ELI project: a distributed eli research infrastructure of the ESFRI roadmap

To strengthen Europe's leading role in laser physics. User facility for researchers of various disciplines.

3 complimentary pillars Mission of ELI ALPS:

To provide advanced femtosecond and attosecond pulses, for temporal investigations of ultrafast dynamics in atoms, molecules, plasmas and solids.

eli Global complementarity ELI-ALPS

J Phys B **50**, 132002 (2017)

Optica 6, 280-287 (2019)

Portfolio of research opportunities Capacity, Capability and Uniqueness

ELI ALPS - Achievements to date

Experimental stations / labs

5 of 12 experimental stations user operational

Laser systems commissioned

5 of 9 lasers user operational

eli Research potential offered @ ELI ALPS

Facility overview

Status of the MIR laser

user ready **14 user campaigns**

	Parameters		Status	Operation due date		
MIR	100 kHz, <40 fs, 0.15 mJ, CEP 100 kHz, 17.5 fs, 88 µJ, CEP	FASTLITE	Operational	since October 2017		

Spectral broadening in cystal pairs (YAG & Si, BaF2 & Si) - - Input (FTL = 47.8 fs) -YAG (FTL = 34.4 fs) -Si (FTL = 21.4 fs) -YAG+Si (FTL = 17.5 fs) 2500 3000 3500 4000 4500 Wavelength [nm] **OUTPUT**

88 μJ, (17.5 fs) 1.9 o.c.@ 3 μm

11W, 110 µJ, 50 fs

- fiber laser technology
- double MPC concept for postcompression<7fs

Status of the HR laser

HR1: user ready7 user campaigns

	Parameters	Status	User readiness
HR1	100 kHz, 40 fs, 1.5 mJ 100 kHz, <7 fs, 1 mJ, CEP	Operational	since Dec 2017 Aug 2021
HR2	100 kHz, <6 fs, 5 mJ, CEP	In development	by Q4 2022

eli Status of the HR GHHG Gas beamline (LTA-4)

- XUV-IR pump-probe studies on gaseous targets at 100 kHz
- diagnostics for the temporal, spectral and spatial characterization of the XUV pulses
- flexible reconfiguration according to user needs (target area between CH04 nd CH05)

~166 as, ~150 pJ generated, ~50 pJ on target @ 100 kHz

P. Ye *et al.*, J. Phys. B **53**, 154004 (2020) P. Ye *et al.*, *submitted to Ultrafast Science* (2021)

Quantum path interferences with chirped laser pulses

ecially designed cooled static HHG cell

specially designed, cooled static HHG cell

VMI-ES Experimental stations for gas phase studies

to obtain energy- and angle resolved information on ions and electrons resulting from the photoionization or photofragmentation of atoms, molecules or nanoparticles

ReMi / Coltrims

Kinematically complete experimental study of ion and electron fragments detected in coincidence

mobile

The NanoESCA end-station dedicated for eli condensed phase and surface dynamics

TOF

MCP

screen

Core capabilities, at 100 kHz XUV – IR / 70 MHz fs CEP oscillator:

- Photoemission Electron Microscopy (PEEM) mode: laterally resolved microscopy of the sample surface with time resolution
- Imaging Photoelectron Spectroscopy mode: lateral, time and energy resolution •
- Momentum microscopy: imaging of the momentum space, time and energy resolution ٠
- With a state-of-the-art Au/Ir(100) imaging spin filter (spin selective electron detection)

eli HR GHHG Cond beamline + XUV mono (LTA3)

-80 -60 -40 -20

0 20

Delay (fs)

40 60

-60 -40 -20

0 20

Delay (fs)

40 60 80

Monochromatized XUV pulses with few femtosecond duration

ELI-ERIC call instruments **Nonlinear THz Spectroscopy Facility**

user ready

- THz pump—THz probe measurements
- Charge carrier dynamics
- Lattice anharmonicity
- THz nonlinearities
- Charge separation dynamics in biological molecules/complexes
- [spectrally resolved THz imaging]

Pump laser (cryo-cooled Amplight)

- Wavelength: 1.03 μm
- Pulse duration: 200 fs
- Pulse energy: $\geq 6 \text{ mJ}$
- **Repetition rate: 1 kHz** ٠
- Jitter to an external clock signal: ≤100 fs ٠

THz source:

•pulse energy: ≥10 µJ

•spectral maximum: in the 0.3-0.6 THz range

•useful spectral content: 0.15-1.5 THz

•peak THz field at the sample: ≥200 kV/cm

8 user campaigns

Spiro-OMeTAD

Perovskite -

Compact TiO₂ -

FTO

Glass

NanoFab

Auxilliary facilities

Zebrafish embryo model to investigate radiobiological effects of pulsed radiation.

RadioBiol

Focused Ion Beam , Electron Beam Lithography Nanofabrication unit, optoelectronical sample preparation, nanooptics research, condensed matter analysis

User experience gathered

Fauinmonts	llsor roady	User
Lquipments	Userreauy	expts
MIR	2017	14
HR1	2017 (40 fs)	7
SEA	2019	2
SYLOS 2	2019	1
GHHG SYLOS Comp	2021	1
THz pump	2021	1
THz Spectr	2020	8
ChemReac (TAS, GPRC)	2020	2
NanoEsca	2020	2

ELI-ALPS early user experiments The quantum spectrometer

Signal $S_{\rm F}$

1.0

0.8

0.6

Photon energy (eV)

9.1

 $n/10^8$ (photons per pulse)

9.0

9.2

9.3

Signal S

(arb. units

9.4

ZnO optical axis \perp laser pol.

8.9

8.8

(Received 28 September 2018; published 14 May 2019)

Other upcoming instruments SYLOS activity 1 kHz

Status of SYLOS2 laser

1.0 .

0.6

0.4

0.0

6.4fs (TL = 6.3fs), Strehl = 0.98

- CS

-25 0 25

Time [fs]

	Parameters	Status	User readiness
SYLOS 2	1 kHz, <6.5 fs, 30 mJ, CEP	Operational	since May 2019
SYLOS alignment	10 Hz, <12 fs, >40 mJ	Operational	since Jan 2019

eli SYLOS GHHG Compact in commissioning

SYLOS GHHG Long in commissioning

Other upcoming instruments SYLOS driven high field interactions

eli

Other upcoming instruments THz activity 0.15-1.5 THz

eli

Other upcoming instruments High Energy THz Beamline

- Materials in extreme THz fields, phase transitions
- Molecule orientation & alignment
- Electron acceleration, manipulation, and bunch characterization
- Relativistic (~1 MeV) ultrashort electron source for timeresolved diffraction & imaging (microscopy)
- Proton post-acceleration

Pump laser: Amplitude Technologies

•Wavelength: 1.03 μm

- •Pulse duration: 500 fs
- •Pulse energy: ≥500 mJ
- •Repetition rate: 50 Hz
- •Synchronized short-pulse output: 0.8 µm | 100 fs | 1 mJ | 1 kHz

THz source: •pulse energy: ≥1 mJ

spectral maximum: in the 0.3-0.6 THz range
useful spectral content: 0.15-1.5 THz
waveform: <2 cycles

GOVERNMENT

European Union European Regional

Development Fund

INVESTING IN YOUR FUTURE

THANK YOU FOR YOUR **ATTENTION!**