

Data processing: a concrete example from NanoESCA endstation @ ELI-ALPS

Csaba VASS

ELI-ALPS, Scientific Applications Division, Surface Dynamics Group

2022.09.13. PaNOSC Summer School

NanoESCA - Google

Google	nanoesca	× ↓ Q
	Q All Images ♀ Maps I Videos I News : More	Tools
	Nanoesca Musical artist	isten

https://scientaomicron.com > electron-spectroscopy > N...

NanoESCA - Scienta Omicron

NanoESCA is an energy-filtering photoemission microscope that can easily switch between the imaging of the momentum space and the real space of ... Key Facts · More Information · Specifications · Results

http://www.bristol.ac.uk > physics > facilities > nanoesca

Bristol NanoESCA Laboratory | School of Physics

The Bristol **NanoESCA** Facility is the newest and one of the most advanced surface analysis instruments in UK. The **NanoESCA** II offers extraordinary surface ...

https://www.fkf.mpg.de > ... > Techniques/Equipment :

NanoESCA (Electron Spectroscopy for Chemical Analysis) Determines quantitatively the chemical composition, the atomic structure, and the electronic structure of surfaces and interfaces on µm and nm scales.

https://www.focus-gmbh.com > PEEM / NanoESCA

NanoESCA - - FOCUS GmbH

The NanoESCA is a sophisticated analytical instrument designed for imaging and small spot photoemission spectroscopy as well as μ -ARUPS. You've visited this page 3 times. Last visit: 6/14/22

Last Time That I Checked Dedication · 2022

Stop Playing Normandie Park · 2020

Right Now Pick Up Game · 2019

Gimme the Look Gimme the Look · 2021

Photoemission electron microscope - PEEM

I eli

Photon sources

IR Pump (HR1 laser)		XUV source - r	Venteon oscillator			
Wavelength	1030 nm (1.2 eV)	Spectral range of GHHG (with monochromatized option)	17-30 eV (Xe, Kr)	25-55 eV (Ar)	70-90 eV (Ne)	830 nm (1.6 eV)
Repetition rate	100 kHz	Pulse energy at end station for attosecond pulse trains	15-50 pJ	5-25 pJ	3-10 pJ	80 MHz
Average power	100 W	Pulse energy at end station for isolated attosecond pulses	5-15 pJ	3-8 pJ	1-3 pJ	300 mW
Pulse energy	>1 mJ					~2.5 nJ
Pulse duration	6.2 fs					<6 fs (CEP stabilized)

NanoESCA end-station

Preparation chamber sample cleaning, preparation, and characterization

Cleaning:

- Ar⁺ ion sputtering
- Annealing (heat- and coolable manipulator)

Preparation:

- e-beam evaporator for metal deposition
- gas dozer based on a capillary array

»eli

- magnetizer
 - Helmholtz coil
 - B field: up to 43 mT

<u>Characterization</u> (laterally averaged):

- **LEED** (Low Energy Electron Diffraction): determination of surface structure
- AES (Auger Electron Spectroscopy): determination of surface composition
- **XPS** (X-ray photoelectron spectroscopy):
 - quantitative chemical analysis of the surface (top few nm)
 - monochromatic Al K_{α} X-ray source
 - 128 detection channels
 - **RGA** (Residual Gas Analyzer) by quadrupole mass spectrometer

Analysis chamber NanoESCA – nano- Electron Spectroscopy for Chemical Analysis Modes (outputs):

PEEM: Photoemission electron microscope

ToF-PEEM: Time of flight + DLD analyzer (delay line detector)

Spectroscopy for selected area: Channeltron detector after first hemisphere

IDEA: Imaging with dispersive energy analyzer

Imaging spin filter: IDEA + spin selective mirror: gold coated Ir(100) crystal

Light sources: Internal (CW) sources:

- Hg arc lamp (5.2 eV 238 nm)
- He discharge lamp
 - HeI: 21.22 eV 58 nm
 - HeII: 40.81 eV 30 nm

Short pulsed sources:

- pump: HR laser fundamental (1.2 eV 1030 nm)
- probe: GHH generated XUV (20-90 eV 62-13.8 nm) (BeamLine condensed)
- Venteon CEP5 oscillator (1.5 eV 830 nm)

Operating modes I-III. & provided data of NanoESCA

In the second se

- I. PEEM (Photoemission electron microscope) imaging WITHOUT energy filtering:
- Outputs:
- single images (1MP, 16 bit)
- metadata (ASCII)

II. Spectroscopy mode Outputs:

Binding Energy (eV

III. Imaging with dispersive energy filtering mode (IDEA)

ToF-PEEM & spin-filter

IV. ToF - PEEM (Time of flight analyzer with imaging (delay line detector - DLD)) Outputs:

- image stacks (~900 images)
- metadata (ASCII)

V.

In eli

V. Spin filtered mode

Outputs:

- images stacks (2 spin orientations)
- metadata (ASCII)

Real space vs. momentum space

photon beam

In eli

Band structure

I eli

Band structure mapping

Metadata connected to a NanoESCA in different phase of the project

Initiation and project preparation phase:

I eli

- Experimental plan planned parameter scans, conditions, etc.
- Sample preparation recipes & sample handling @previous studies & users' knowhow
- Results of preliminary simulations if relevant

Sample preparation phase:

• Sample preparation metadata & laterally averaged measurement data @LEED PC & XPS PC & handwritten notes – e-LogBook

Experimental phase:

- Automatically stored NanoESCA metadata in an ASCII files @NanoESCA PC
- Automatically stored environmental parameters @Archiving service of ELI-ALPS
- Further relevant but not automatically stored parameters (e.g. positions/status of manually adjusted components)
 @handwritten notes & e-LogBook
- Metadata of photon sources (internal lamps & laser & secondary sources) @handwritten notes & e-LogBook

Postprocessing & analysis phase:

- Image corrections, calibrations
- Simulations

Publishing phase:

• Final cross sections selection, filtering, etc.

Metadata of initiation

Sample preparation recipes & sample handling @previous studies & users' knowhow

sample	cleaning = sputtering 15 min 1.0KV 1.8×10-4mbarAr, 17 ma
9200	Ppc= 2.9× 10-1° mbar Pmc=8.4× 10-11 mbar
	Oxidention of sample a 5.0x 10-7 mbar on 20 min
	~ 550°C
	Signitizen v
	Oxidention 2th
	Sputtening 2.th
	Annealing.
11200	Sample unnealing 1.7A/ 4001/7.1mg for 20min
	sample cruttering 1.04 V/ 25mal 17mp for 20min
	annealing 1.741 4001/ 4.1mA for 20 min

Cleaning

Fieparation
Ce degass: 1.2 A/14V/44MA than AMA, PPC=9.7+100
4 digit for microbalance:
3139" 3155" 3145" 3144" 3135" 3146"
Cedeportion @ 200°c, 1.0×10° mbar 02
Reportion time: 8/38/ ~9.2 digit areal
provision N=7 M= 8.75 2=14.25 0=800.
Sample heating 1.65 A for 5 min V 1.25A
After deposition, keep for amin, cooling down
in or atmosphere for somin.

Droporation

Reference (LEED)

Example II.

- Rh(111) cleaning with Ar⁺ sputtering & annealing cycles
- Au deposition @500K & annealing @1000K, afterwards
- Borazine exposure @1000-1050 K

i eli

• decomposition of borazine $(B_3N_3H_6)$ at ~1050 K

R. Gubó, G. Vári, J. Kiss, A. P. Farkas, K. Palotás, L. Óvári, A. Berkó, Z. Kónya, *Phys.Chem.Chem.Phys.* 2018, **20**, 15473.

The preparation chambers and its subsystems differs in all institute (temperature calibration is the most critical), so the recipes has to be fine tuned to our system to reproduce the sample, which could be time consuming.

Metadata of sample preparation & laterally averaged sample analysis

Home / LogBook / Preparation of 4ML CeO2 on Au788 (AUCERIA)

Metadata of NanoESCA measurements

Automatically stored NanoESCA metadata in an ASCII file and display in the history window e.g.:

- Electron–optical parameters (voltage of the lenses & components)
- Exposure-time
- Number of averaged images

ei

History window:

- Parameter-scan range (single loop: start end, step size; nesting loops: under development)
 - Most frequently: kinetic energy scan (of the analyzed electrons)
 - Further parameter (scanning is possible with almost all electron optical parameters)
 - External parameter (e.g.: delay stage positions, CEP (linear stage position), polarization (angle of waveplate))
 - Crystal voltage scan (IV (current-voltage) curve) of the spin filter

	Non	E EE	-	Operator	VCs		Inst	rument Mode	Energy Filtered	Mode
	nan			Sample	Au(111)			N Scan	100	
Axis	Sta	rt 21.100	- De	etector Mode	Camera		-	Dwell Time	10000 r	ns
	Sto	p 21.100		CIH CA1	0.5			hoton Energy	21 2197	50 eV
	Ste	ep 0.000)	SILCAT	0.5		1.5	noton Energy	21.2107	50 EV
. 2				Slit EA2	3.0	mm		Iris Diameter	20.0 µm	6
-	E-EF:	-> Axis	TRANS :	-> Track	Epass	: 50.000eV	P3A :	640.0V	FOC Track :	Tel-Ret.
	EXT :	20000.0V	P1A:	476.0V	FL1	: -> Track	P3B :	288.0V	Delta Z :	0
	FOC :	-> Track	P1B :	1600.0V	FL2	: -> Track	P4 :	796.0V	Spl. Dist. :	2.240mm
	COL :	2000.0V	P2A :	12.0V	TL2/4	: 210.0V	L1 :	950.0V	FOC Cor :	0.100%
	COL2 :		P2B :	1100.0V	TL3	: -> Track	L2 :	950.0V	W SPL :	4.500000eV
C	OL-T:	-> Track	RP :	-> Track	RP2	: -> Track	MCP :	1750.0V	SCR :	4000.0V
	R1 :	544.0V	R3 :	280.0V	Shld	: 50.0V	MCP-D:	0.0V	PC:	0.0V
	R2 :	280.0V	R4 :	544.0V	Crys	: 0.0V	Grid :			
Stig	g1 Vx :	-2.590	Stig2 Vx :	0.090	Def Ax	: -0.060	Def2 Ax :	0.309	Def-D Ax :	0.000
Stig	1 Vy :	-4.170	Stig2 Vy :	-1.280	Def Ay	: -0.110	Def2 Ay :	0.298	Def-D Ay :	0.000
Stic	1 Sx :	-0.120	Stig2 Sx :	0.000	Def Bx	: -0.240	Def2 Bx :	0.000	Def-D Bx :	0.000
Stic	1 Sy :	0.010	Stig2 Sy :	0.150	Def By	: -0.220	Def2 By :	0.000	Def-D By :	0.000
Ape	ert. X :	-58.3µm	Apert. Y :	2395.4µm	Sample X	: 6.1µm	Sample Y :	9.4µm		
Ext	ern 1 :	Off	Extern 2 :	Off	Extern 3	: Off	Extern 4 :	Off	Extern 5 :	Off

ASCII:

Extern

Para 1

Para 2

Para 3

Para 4

Para 5

0

MOD01 NAME = "COL-T" MOD01 ADDR = "050" MOD01 PARA1 NAME = "UNOM" MOD01 PARA1_VALUE = 1000.000000 MOD02 NAME = "P1a" MOD02_ADDR = "051" MOD02 PARA1 NAME = "UNOM" MOD02 PARA1 VALUE = 471.500000 MOD03 NAME = "P2a" MOD03 ADDR = "053" MOD03 PARA1 NAME = "UNOM" MOD03_PARA1_VALUE = 8.000000 MOD04_NAME = "P1b" MOD04 ADDR = "052" MOD04 PARA1 NAME = "UNOM" MOD04 PARA1 VALUE = 1500.000000

Spectrum

Data structure of raw measured data (images) & its metadata

Experiment List											
Name	Instr. Mode	Event C.	Axis	Start	Stop	Step	FoV	Dwell [ms]	N Scan	Time	ς
15-0_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	Γ
15-1_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	Γ
15-2_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-3_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-4_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-5_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	Γ
15-6_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-7_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-8_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-9_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	Γ
16-0_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
14-0ref_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-64-6eV_ul	Energy Filtered Mode	Off	E-EF	3.600000	4.600000	0.200000	k-Space	10000	8	00:08:00	T
15-0ref_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_ul-CEP	Energy Filtered Mode	Off	E-EF	3.000000	6.000000	0.100000	k-Space	10000	8	00:41:20	T
21_R5-F1_IDEA_RS_PE100_S1_20kV_FoV83_Hg01_4-85eV_MCP1800_FOC3020	Energy Filtered Mode	Off	E-EF	4.850000	4.850000	0.000000	Realspace	500	1200	00:10:00	T.
17_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_3-25-4eV_FSw15	Energy Filtered Mode	Off	E-EF	3.200000	5.400000	0.100000	k-Space	10000	2	00:07:40	T
05_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_4-0eV_FSw024	Energy Filtered Mode	Off	Extern	0.000000	24000000.00	2000000.000	k-Space	10000	1	00:02:10	T

in di

 \geq

¥

>

≻ \mathbf{v}

[2022-08-22_nRhombs_R5_V_RS-KS_2nd]	\14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_220823_19	4259\Sum*.*			*	-
[2022-08-23_nRhombs_R5_V_RS-KS_3rd]	★Name	Ext	Size	Date	Attr	_
[01_R5-F1_IDEA_RS_PE100_S1_200V_FoV162_V_4-3eV_spot-size_220823_160815]	全 [J]		<dir></dir>	2022-08-23 20:25		~
[02_R5-F1_IDEA_RS_PE100_S1_20kV_FoV83_V_4-3eV_IMG_220823_161308]	14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV	DAT	6,33	3 2022-08-23 20:25	-a	
[03_R5-F1_IDEA_RS_PE100_S1_20kV_FoV83_V_4-3eV_IS40um_220823_161518]	4 14-0 R5-F2 IDEA KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV	TIF	2,097,40	3 2022-08-23 20:25	-a	
[04_R5-F1_IDEA_KS_PE100_S1_20kV_FoV2-1_V_4-0eV_cent_220823_161930]	4 14-0 R5-F2 IDEA KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_001	TIF	2,097,40	3 2022-08-23 20:25	-a	
[05_EXP_4-0eV_FSw024_220823_162645]	14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_002	TIF	2,097,40	3 2022-08-23 20:25	-a	
[06_EXP_36eV_FSw15_20deg_220823_165922]	14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_003	TIF	2,097,40	3 2022-08-23 20:25	-a	
[07_EXP_36eV_FSw15_30deg_220823_171744]	14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_004	TIF	2,097,40	3 2022-08-23 20:25	-a	
[08_EXP_36eV_FSw15_40deg_220823_172405]	14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_005	TIF	2,097,40	3 2022-08-23 20:25	-a	
[09_EXP_3beV_FSw15_50deg_220823_173127]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_006	TIF	2,097,40	3 2022-08-23 20:25	-a	
[10_EXP_3beV_FSw15_b0deg_220823_174310]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_007	TIF	2,097,40	3 2022-08-23 20:25	-a	
[11_EXP_3beV_FSW15_70deg_220823_175448]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_008	TIF	2,097,40	3 2022-08-23 20:25	-a	
[12_K3-F1_IDEA_KS_PE100_S1_20KV_F0V2-1_V_4-0ev_Img_220823_1818533]	14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_009	TIF	2,097,40	3 2022-08-23 20:25	-a	
[13_EAP_30eV_FSW15_20deg_220823_184003]	4. 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_010	TIF	2,097,40	3 2022-08-23 20:25	-a	
[14_EAP_3-23-4ev_FSW15_20deg_220823_185323]	4. 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_011	TIF	2,097,40	3 2022-08-23 20:25	-a	
[15_EAP_3-23-4ev_F3w15_40deg_220825_183843]	4. 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_012	TIF	2,097,40	3 2022-08-23 20:25	-a	
[10_EAP_3-23-4ev_F3w15_30deg_220823_190332]	4. 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_013	TIF	2,097,40	3 2022-08-23 20:25	-a	
[17_EAP_3-23-4ev_F3w13_00deg_220623_190639]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_014	TIF	2,097,40	3 2022-08-23 20:25	-a	
[10_KJ-FZ_IDEA_KS_PE100_51_20kv_F0v05_v_4-3ev_I340dm_220025_192519]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_015	TIF	2,097,40	3 2022-08-23 20:25	-a	
□ [19_EAP_(3-P2_3-06V_P3W14-10_220023_134239] ↓ [14_0_R5_E2_IDEA_KS_DE100_S1_20kV_EaV2_1_V_26_0eV_220823_104250]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_016	TIF	2,097,40	3 2022-08-23 20:25	-a	
[14-0_N3-12_DEA_N3_FE100_31_20KV_10V2-1_V_30-0eV_220023_134233]	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_017	TIF	2,097,40	3 2022-08-23 20:25	-a	
	4 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_018	TIF	2,097,40	3 2022-08-23 20:25	-a	
FI4-0ref R5-F2 IDFA KS PE100 S1 20kV EoV2-1 V 36-0eV 220824 1035461	4. 14-0_R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_019	TIF	2,097,40	3 2022-08-23 20:25	-a	
► [14-1 R5-F2 IDEA KS PE100 S1 20kV FoV2-1 V 36-0eV 220823 202529]	4 14-0 R5-F2_IDEA_KS_PE100_S1_20kV_FoV2-1_V_36-0eV_AV_020	TIF	2,097,40	3 2022-08-23 20:25	-a	
			1 007 40	1 10017 00 77 70.7E	-	

Metadata of NanoESCA measurements

Automatically stored 'environmental' parameters:

• Chamber pressures (Grafana)

» eli

- Sample temperatures (Preparation chamber: Grafana, analysis chamber: local log file, notes)
- Vacuumpump (current & speed) and cooling parameters (pressure, temperature, flow rate)
- Status of the pneumatic gate valves
- Laboratory temperature, air pressure, humidity

Further relevant but not automatically stored parameters

- Sample position
- Spin-filter position
- Spin filter preparation (cleaning, evaporation, annealing) & IV curve

끎 NanoESCA ☆ ペ	G Last 5 minutes v Q C 1m
Pressure(mean) 1.00e-10	Pressure(mean) 1.00e-4 - Analysis PreVac 1.000e-4 - HIS14 PreVac 1.000e-4 - HIS14 PreVac 1.000e-4 - Preparation PreVac 1.000e-4 - Spin PreVac 1.000e-4 - Spin PreVac 1.000e-4
Image: constraint of the	Flow rate(mean) 1.00 L/min
Pump - Speed(mean) 100.00 K 90.00 K	Pump - Current(mean) 0.20A 0.15A 0.10A 0.05A 0A 14.31 14.32 14.33 14.34 0.15A 0A 0.15A 0A 0A 0A 0A 0A 0A 0A 0A 0A 0
Gate valve Pressure(mean)	current — FR.NanoE-DP 1.000e-10 — FR.NanoE-DP-2 1.000e-10
Air temperature Relative Humidity 22.50 °C 45.00 %H 22.00 °C 45.00 %H 21.50 °C 40.00 %H 20.50 °C 10:00 12:00 14:00 - Venting - POI	Absolute Humidity Relative air pressure 9.00 g/m³ 50.00 8.00 g/m³ 40.00 6.00 g/m³ 6.00 g/m³ 10:00 12:00 10:00 12:00 10:00 12:00 10:00 12:00

Metadata of NanoESCA photon sources I. CW & laser sources (e-LogBook & handwritten notes)

- Continuous wave sources for static measurements:
 - Hg arc lamp: ON/OFF; intensity determined by the filter (100%, 10%, 1%) manually stored
 - He discharge lamp: current & voltage & pressures manually stored

Parameters of laser sources (pump pulse):

» eli

- spectrum
- pulse length
- beam profile
- other (mirrors & wedge positions; pressures in the multi-pass cells)

Metadata of NanoESCA photon sources II. Characterization of XUV source (e-LogBook)

 Beam profile (gas: Xe): fluorescence of diffracted harmonics on Ce:YAG crystal

In eli

 Pulse length: IR-XUV crosscorrelation spectrogram

- Operation mode & position of the optical components
- Applied gas

Spectrum

- Position of gas cell
- Intensity of IR & XUV
- Pressure in the target chamber
- Applied filters

Post processing

- Flatfield correction
- Calibration of energy scale and the lateral scales
- Correction of sample tilting & rotation

In eli

- Correction of distortions (elliptical distortion of electron optics)
- Calculation of Fermi-edge & work function
- Preparation of spin-contrast images

Working point I (S > 0)

Spin polarization map

Simulations – cooperation with our simulation group

Example: measured (colored) and simulated (grayscale) band structure of Rh(111)

I eli

Public access to the data

Requirements with the shared NanoESCA data (& metadata):

ille eli

- Searchable
- Universal/known data structure (ontology)
- Contains all relevant data (and their metadata) for further analysis
 - Sample preparation recipes & result of preliminary analysis (XPS, AES, LEED)
 - Metadata of NanoESCA measurements and photon sources
 - Steps of image correction
- The related data has to link together
- It has to be understood for a specialist in the relevant research field
- Information for the **reproducibility**

Challenges:

Store all the relevant data in universal structure including data from different sources:

- Main data & metadata of NanoESCA in progress with our software engineers
- Metadata from e-LogBooks templates with automatic importing possibilities
- Metadata from laser & secondary sources & instruments
- Handwritten notes are not acceptable has to be eliminate

Ontology:

 New techniques in an existing structures: the structures has to modified (ARPES vs. spectro-microscope)

Thank you for your kind attention!

European Union European Regional Development Fund

Hungarian Government

INVESTING IN YOUR FUTURE